98%
921
2 minutes
20
The modeling of spin-orbit coupling (SOC) remains a challenge in computational chemistry due to the high computational cost. With the rising popularity of spin-driven processes and f-block metals in chemistry and materials science, it is incumbent on the community to develop accurate multiconfigurational SOC methods that scale to large systems and understand the limits of different treatments of SOC. Herein, we introduce an implementation of perturbative SOC in scalar-relativistic two-component CASSCF (srX2C-CASSCF-SO). Perspectives on the limitations and accuracy of srX2C-CASSCF-SO are presented via benchmark calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c08031 | DOI Listing |
J Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDFNano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China.
The photophysical properties of two new Bodipy dimers are investigated using a variety of techniques, including steady-state UV-vis absorption and fluorescence spectroscopy, femtosecond and nanosecond transient absorption spectroscopy, and pulse laser-excited time-resolved electron paramagnetic resonance (TREPR) spectroscopic methods. The dimers are formed by the Bodipy units rigidly linked by the orthogonal phenylene bridge. One of the dimers is composed of iodinated units, and the other is not.
View Article and Find Full Text PDFSmall
September 2025
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China.
The precise modulation of the lifetime and the responsive properties of room-temperature phosphorescence (RTP) is essential for realizing its multifunctional applications. Herein, a facile strategy is presented to achieve a series of cellulose benzoate esters (CBE-X, X = H/CH/OH/NH) with lifetime-tunable RTP through substituent engineering. Enhancing the electron-donating ability of CBE-X effectively modulates the HOMO-LUMO gap, exciton energy, spin-orbit coupling, and interaction between cellulose chains, thereby enabling control over the RTP lifetime.
View Article and Find Full Text PDF