Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Plasma biomarkers of Alzheimer's disease (AD) constitute a non-invasive tool for diagnosing and classifying subjects. They change even in preclinical stages, but it is necessary to understand their properties so they can be helpful in a clinical context.

Objective: With this work we want to study the evolution of p-tau231 plasma levels in the preclinical stages of AD and its relationship with both cognitive and imaging parameters.

Methods: We evaluated plasma phosphorylated (p)-tau231 levels in 146 cognitively unimpaired subjects in sequential visits. We performed a Linear Mixed-effects Model to analyze their rate of change. We also correlated their baseline levels with cognitive tests and structural and functional image values. ATN status was defined based on cerebrospinal fluid biomarkers.

Results: Plasma p-tau231 showed a significant rate of change over time. It correlated negatively with memory tests only in amyloid-positive subjects. No significant correlations were found with any imaging measures.

Conclusions: Increases in plasma p-tau231 can be detected at one-year intervals in cognitively healthy subjects. It could constitute a sensitive marker for detecting early signs of neuronal network impairment by amyloid.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-231479DOI Listing

Publication Analysis

Top Keywords

plasma phosphorylated
8
one-year intervals
8
intervals cognitively
8
cognitively unimpaired
8
unimpaired subjects
8
preclinical stages
8
rate change
8
plasma p-tau231
8
plasma
6
subjects
5

Similar Publications

Objective: The objective of this study was to determine the predictive value of amyloid-positron emission tomography (PET) versus the plasma ratio of phosphorylated tau at threonine 217 (p-tau217) to non-phosphorylated tau217 (%p-tau217) for tau-PET transitions (T- to T+). The added value of combining plasma amyloid-β 42 and amyloid-β 40 (Aβ42/40) and %p-tau217 into an amyloid probability score (APS2) was also assessed.

Methods: Mayo Clinic Study of Aging (MCSA) participants had plasma markers measured at via mass spectrometry (MS), an amyloid-PET scan, and a tau-PET (meta-temporal region of interest [ROI]) negative scan (standardized uptake value ratio [SUVR] <1.

View Article and Find Full Text PDF

Introduction: Simple screening tools are critical for assessing Alzheimer's disease (AD)-related pre-dementia changes. This study investigated longitudinal scores from the Quick Dementia Rating System (QDRS), a brief study partner-reported measure, in relation to baseline levels of the AD biomarker plasma pTau217 in individuals unimpaired at baseline.

Methods: Data from the Wisconsin Registry for Alzheimer's Prevention (N = 639) were used to examine whether baseline plasma pTau217 (ALZpath assay on Quanterix platform) modified QDRS or Preclinical Alzheimer's Cognitive Composite (PACC3) trajectories (mixed-effects models; time = age).

View Article and Find Full Text PDF

GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Obesity-associated obstructive sleep apnea (OSA) highlights the need for effective therapies. Hypothalamic endoplasmic reticulum (ER) stress contributes to leptin resistance in obesity. Although hesperidin (HE) modulates ER stress and oxidative pathways, its low bioavailability limits clinical use, its role in OSA is unknown.

View Article and Find Full Text PDF