A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes. | LitMetric

Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes.

J Colloid Interface Sci

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The issues of dendrite growth, hydrogen evolution reaction, and zinc anode corrosion have significantly hindered the widespread implementation of aqueous zinc-ion batteries (AZIBs). Herein, trace amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) additive is introduced into AZIBs to protect the zinc metal anode. Trace amounts of the TEMPO additive with nitroxyl radical can provide fast Zn transport and anode protection ability by forming an adsorbed molecular layer via Zn-O bond. This interface not only provides strong interfacial compatibility and promotes dynamic transport of Zn, but also induces deposition of Zn along Zn (002) plane. Additionally, the molecular protective layer significantly inhibits hydrogen evolution reaction (HER) and corrosion. The Zn anodes achieve high Coulombic efficiency of up to 99.75 % and long-term plating/stripping of more than 1400 h at 1 mA cm and 0.5 mAh cm. The Zn//Zn symmetric cell can operate continuously for 2500 h at a current density of 1 mA cm and 1 mAh cm, and it can still last for nearly 1400 h even when the current density is increased to 5 mA cm. Furthermore, the Zn//VO full cell using TEMPO/ZnSO electrolyte effectively maintains a maximum capacity retention rate of 53.4 % even after 1500 cycles at 5 A/g. This innovative strategy introduces trace additive with free radicals into the electrolyte, which may help to achieve large-scale, ultra-long-life, and low-cost AZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.03.085DOI Listing

Publication Analysis

Top Keywords

nitroxyl radical
8
molecular protective
8
protective layer
8
hydrogen evolution
8
evolution reaction
8
trace amounts
8
tempo additive
8
1 ma cm mah
8
current density
8
radical triggered
4

Similar Publications