Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
-2--Butyl-5-(-butylsulfonyl)-1,3-dioxane (-1) exhibits a high degree of eclipsing in the H-C5-S-C segment in the solid state, the origin of which remains unexplained. The eclipsed conformation that corresponds to an energetic minimum in the solid state practically corresponds to a rotational transition state in solution, which allows an approach to understand transitions states. The difference in the enthalpy of sublimation Δ between -1 and the more stable -1 is 8.40 kcal mol, lets to consider that the intermolecular interactions in the crystalline structure must be responsible for the conformational effect observed in the solid state. The study of the experimental electron density of -1 in solid state allowed to establish that CH⋯OS intermolecular interaction is the main contribution to the observed eclipsing. The charge density analysis was also performed using the quantum theory of atoms in molecules to evaluate the nature and relevance of the intermolecular interactions in the crystal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04914k | DOI Listing |