98%
921
2 minutes
20
In the genus, various mosquito species are able to transmit the parasites responsible for malaria, while others are non-vectors. In an effort to better understand the biology of species and to quantify transmission risk in an area, the identification of mosquito species collected in the field is an essential but problematic task. Morphological identification requires expertise and cannot be checked after processing samples in a destructive treatment, while sequencing of numerous samples is costly. Here, we introduce a method of Species identification via Simple Observation Coupled with Capillary Electrophoresis Technology (SOCCET). This molecular technique of species identification is based on precise determination of ITS2 length combined with a simple visual observation, the colour of mosquito hindleg tip. DNA extracted from field-collected mosquitoes was amplified with universal ITS2 primers and analysed with a capillary electrophoresis device, which precisely determines the size of the fragments. We defined windows of amplicon sizes combined with fifth hind tarsus colour, which allows discrimination of the major species found in our collections. We validated our parameters via Sanger sequencing of ITS2 amplicons. Using the SOCCET method, we characterised the composition of populations in five locations of French Guiana, where we detected a total of nine species. and were detected in four locations each and represented 13 and 67% of our samples, respectively. The SOCCET method can be particularly useful when working with routine sampling sites with a moderate species diversity, that is, when the number of local species is too high to define species-specific primers but low enough to avoid individual ITS2 sequencing. This tool will be of interest to evaluate local malaria transmission risk and this approach may be further implemented for other mosquito genera.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933085 | PMC |
http://dx.doi.org/10.1002/ece3.10782 | DOI Listing |
J Sep Sci
September 2025
Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.
View Article and Find Full Text PDFSci Justice
September 2025
Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil. Electronic address:
Short Tandem Repeats (STRs) are the standard technique used in forensic genetics for individual identification due to their high polymorphism and robustness. Although Capillary Electrophoresis (CE) enables the analysis of many STRs, Next-Generation Sequencing (NGS) offers enhanced resolution and the ability to detect STRs' isoalleles and their flanking regions, enhancing the discrimination power of this analysis. Despite the fact that STR kits for NGS are well standardized for evaluating forensic samples, there is no data on their effectiveness in differentiating monozygotic (MZ) twins, which are indistinguishable by CE.
View Article and Find Full Text PDFClin Lab
September 2025
Background: Light chain multiple myeloma (LCMM) is a malignant hematological disease characterized by bone marrow infiltration by tumor plasma cells and the secretion of monoclonal free light chains (κ or λ). It is often di-agnosed through hypogammaglobulinemia detected by serum protein electrophoresis, followed by immunotyping showing a monoclonal band in free light chains. However, the structure of monoclonal light chains can sometimes complicate laboratory findings.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Jalisco, México.
The objective of this study was to evaluate the concentration and integrity index of circulating cell-free DNA (ccf-DNA) as biomarkers for the detection and monitoring of minimal residual disease (MRD) in pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL). Comparison with a validated methodology for the quantification of monoclonal rearrangements of the IGH gene was made. Peripheral blood and bone marrow samples were collected from 10 pediatric patients with B-ALL at diagnosis, remission, and maintenance phases.
View Article and Find Full Text PDFForensic Sci Int Synerg
December 2025
DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101 Philippines.
Massively parallel sequencing (MPS) has caused a paradigm shift in forensic DNA analysis by enabling simultaneous examination of multiple genetic markers with higher resolution. Despite its growing importance, adoption in the 11 Southeast Asian countries remains limited. This paper reviews MPS implementation in forensic DNA laboratories across the region and discusses key adoption challenges.
View Article and Find Full Text PDF