98%
921
2 minutes
20
Ti6Al4V (Ti64) is a versatile material, finding applications in a wide range of industries due to its unique properties. However, hydrogen embrittlement (HE) poses a challenge in hydrogen-rich environments, leading to a notable reduction in strength and ductility. This study investigates the complex interplay of solute hydrogen (SH) and hydride phase (HP) formation in Ti64 by employing two different current densities during the charging process. Nanoindentation measurements reveal distinct micro-mechanical behavior in base metal, SH, and HP, providing crucial insights into HE mechanisms affecting macro-mechanical behavior. The fractography and microstructural analysis elucidate the role of SH and HP in hydrogen-assisted cracking behaviors. The presence of SH heightens intergranular cracking tendencies. In contrast, the increased volume of HP provides sites for crack initiation and propagation, resulting in a two-layer brittle fracture pattern. The current study contributes to a comprehensive understanding of HE in Ti6Al4V, essential for developing hydrogen-resistant materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935194 | PMC |
http://dx.doi.org/10.3390/ma17051178 | DOI Listing |
Adv Mater
September 2025
Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
Hydrogen embrittlement (HE) poses a significant challenge to the durability of materials used in hydrogen production and utilization. Disentangling the competing nanoscale mechanisms driving HE often relies on simulations and electron-transparent sample techniques, limiting experimental insights into hydrogen-induced dislocation behavior in bulk materials. This study employs in situ Bragg coherent X-ray diffraction imaging to track three-dimensional (3D) dislocation and strain field evolution during hydrogen charging in a bulk grain of austenitic 316 stainless steel.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Materials Science and Engineering, Federal University of São Carlos, Rod. Washington Luís, São Carlos, SP CEP 13565-905, Brazil.
Supermartensitic stainless steels (SMSS) reinforced with a percolated boride network offer exceptional corrosion and wear resistance, making them well-suited for oil and gas applications. However, hydrogen embrittlement (HE) poses significant challenges in offshore environments. This study examines HE in SMSS with boron additions ranging from 0.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia.
Hydrogen-induced steel embrittlement imposes a technical difficulty in facilitating effective and safe hydrogen transportation via pipelines. This investigative study assesses the potency of polyvinylidene fluoride (PVDF)-graphene-based composite coatings in the inhibition of hydrogen permeation. Spin coating was the method selected for this study, and varying graphene concentrations ranging from 0.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Key Lab of Disaster Prevention and Structural Safety, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China.
Addressing the limitations of traditional fatigue life prediction methods, which rely on extensive experimental data and incur high costs, and given the current absence of studies that employ deformation inhomogeneity parameters to construct fatigue-indicator parameter (FIP) for predicting low-cycle fatigue (LCF) life of metals in hydrogen environments, this study firstly explores how hydrogen pre-charging influences the LCF behavior of hot-rolled ribbed bar grade 400 (HRB400) steel via experimental and crystal plasticity simulation, and focus on the relationship between the fatigue life and the evolution of microscale deformation inhomogeneity. The experimental results indicate that hydrogen charging causes alterations in cyclic hysteresis, an expansion of the elastic range of the stabilized hysteresis loop, and a significant reduction in LCF life. Secondly, a novel FIP was developed within the crystal plasticity finite element method (CPFEM) framework to predict the LCF life of HRB400 steel under hydrogen influence.
View Article and Find Full Text PDFMaterials (Basel)
July 2025
College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
Chromium-molybdenum steels are extensively used in manufacturing large-volume seamless hydrogen storage vessels, but they still suffer from the hydrogen embrittlement problem. In this study, electrochemical cathodic hydrogen charging is utilized to investigate the hydrogen embrittlement of 4130X steels, with emphasis on the influence of charging current density and temperature on hydrogen permeation and hydrogen embrittlement susceptibility. The hydrogen penetration rate and hydrogen diffusion coefficient of 4130X steel both increase with an increase in hydrogen-charging current density and temperature.
View Article and Find Full Text PDF