A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating image and gene-data with a semi-supervised attention model for prediction of KRAS gene mutation status in non-small cell lung cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

KRAS is a pathogenic gene frequently implicated in non-small cell lung cancer (NSCLC). However, biopsy as a diagnostic method has practical limitations. Therefore, it is important to accurately determine the mutation status of the KRAS gene non-invasively by combining NSCLC CT images and genetic data for early diagnosis and subsequent targeted therapy of patients. This paper proposes a Semi-supervised Multimodal Multiscale Attention Model (S2MMAM). S2MMAM comprises a Supervised Multilevel Fusion Segmentation Network (SMF-SN) and a Semi-supervised Multimodal Fusion Classification Network (S2MF-CN). S2MMAM facilitates the execution of the classification task by transferring the useful information captured in SMF-SN to the S2MF-CN to improve the model prediction accuracy. In SMF-SN, we propose a Triple Attention-guided Feature Aggregation module for obtaining segmentation features that incorporate high-level semantic abstract features and low-level semantic detail features. Segmentation features provide pre-guidance and key information expansion for S2MF-CN. S2MF-CN shares the encoder and decoder parameters of SMF-SN, which enables S2MF-CN to obtain rich classification features. S2MF-CN uses the proposed Intra and Inter Mutual Guidance Attention Fusion (I2MGAF) module to first guide segmentation and classification feature fusion to extract hidden multi-scale contextual information. I2MGAF then guides the multidimensional fusion of genetic data and CT image data to compensate for the lack of information in single modality data. S2MMAM achieved 83.27% AUC and 81.67% accuracy in predicting KRAS gene mutation status in NSCLC. This method uses medical image CT and genetic data to effectively improve the accuracy of predicting KRAS gene mutation status in NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927133PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297331PLOS

Publication Analysis

Top Keywords

kras gene
16
mutation status
16
gene mutation
12
genetic data
12
attention model
8
model prediction
8
non-small cell
8
cell lung
8
lung cancer
8
semi-supervised multimodal
8

Similar Publications