98%
921
2 minutes
20
While the establishment of an ovarian cancer biobank from patient-derived organoids along with their clinical background information promises advances in research and patient care, standardization remains a challenge due to the heterogeneity of this lethal malignancy, combined with the inherent complexity of organoid technology. This adaptable protocol provides a systematic framework to realize the full potential of ovarian cancer organoids considering a patient-specific variability of progenitors. By implementing a structured experimental workflow to select optimal culture conditions and seeding methods, with parallel testing of direct 3D seeding versus a 2D/3D route, we obtain, in most cases, robust long-term expanding lines suitable for a broad range of downstream applications. Notably, the protocol has been tested and proven efficient in a great number of cases (N = 120) of highly heterogeneous starting material, including high-grade and low-grade ovarian cancer and stages of the disease with primary debulking, recurrent disease, and post-neoadjuvant surgical specimens. Within a low Wnt, high BMP exogenous signaling environment, we observed progenitors being differently susceptible to the activation of the Heregulin 1 ß (HERß-1)-pathway, with HERß-1 promoting organoid formation in some while inhibiting it in others. For a subset of the patient's samples, optimal organoid formation and long-term growth necessitate the addition of fibroblast growth factor 10 and R-Spondin 1 to the medium. Further, we highlight the critical steps of tissue digestion and progenitor isolation and point to examples where brief cultivation in 2D on plastic is beneficial for subsequent organoid formation in the Basement Membrane Extract type 2 matrix. Overall, optimal biobanking requires systematic testing of all main conditions in parallel to identify an adequate growth environment for individual lines. The protocol also describes the handling procedure for efficient embedding, sectioning, and staining to obtain high-resolution images of organoids, which is required for comprehensive phenotyping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66467 | DOI Listing |
J Immunother Precis Oncol
August 2025
The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
Introduction: Patients with advanced solid tumors may be considered for early phase clinical trials investigating the safety, tolerability, and dosing of experimental therapies. Optimizing participant selection is critical to maximize clinical benefit and meet trial endpoints with fewer participants. One in six participants does not meet routine life expectancy requirements (>3 months), highlighting the need for improved prognostication.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.
Am J Hum Genet
September 2025
Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:
Multiplex assays of variant effect (MAVEs) provide promising new sources of functional evidence, potentially empowering improved classification of germline genomic variants, particularly rare missense variants, which are commonly assigned as variants of uncertain significance (VUSs). However, paradoxically, quantification of clinically applicable evidence strengths for MAVEs requires construction of "truthsets" comprising missense variants already robustly classified as pathogenic and benign. In this study, we demonstrate how benign truthset size is the primary driver of applicable functional evidence toward pathogenicity (PS3).
View Article and Find Full Text PDFCell Rep Med
September 2025
Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:
Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.
View Article and Find Full Text PDFJ Int Med Res
September 2025
Obstetrics and Gynecology Department, Wuhan University Zhongnan Hospital, China.
ObjectiveThis study aimed to evaluate the efficacy and safety of hyperthermic intraperitoneal intraoperative chemotherapy (HIPEC) in patients with advanced ovarian cancer.MethodsA total of 200 patients with advanced ovarian cancer were enrolled in this retrospective study and randomly allocated to two groups (research registry number: 11353). On the first day after abdominal closure, routine treatment was performed in the non-HIPEC group, whereas HIPEC was performed in the HIPEC group.
View Article and Find Full Text PDF