A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

KSR1 mediates small-cell lung carcinoma tumor initiation and cisplatin resistance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Small-cell lung cancer (SCLC) has a dismal five-year survival rate of less than 7%, with limited advances in first line treatment over the past four decades. Tumor-initiating cells (TICs) contribute to resistance and relapse, a major impediment to SCLC treatment. Here, we identify Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade, as a critical regulator of SCLC TIC formation and tumor initiation . We further show that KSR1 mediates cisplatin resistance in SCLC. While 50-70% of control cells show resistance after 6-week exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC cells in ASCL1, NeuroD1, and POU2F3 subtypes. KSR1 KO significantly enhances the ability of cisplatin to decrease SCLC TICs via extreme limiting dilution analysis (ELDA), indicating that KSR1 disruption enhances the cisplatin toxicity of cells responsible for therapeutic resistance and tumor initiation. The ability of KSR1 disruption to prevent cisplatin resistant in H82 tumor xenograft formation supports this conclusion. Previous studies indicate that ERK activation inhibits SCLC tumor growth and development. We observe a minimal effect of pharmacological ERK inhibition on cisplatin resistance and no impact on TIC formation via ELDA. However, mutational analysis of the KSR1 DEF domain, which mediates interaction with ERK, suggests that ERK interaction with KSR1 is essential for KSR1-driven cisplatin resistance. These findings reveal KSR1 as a key regulatory protein in SCLC biology and a potential therapeutic target across multiple SCLC subtypes.

Statement Of Implication: Genetic manipulation of the molecular scaffold KSR1 in small-cell lung cancer cells reveals its contribution to cisplatin resistance and tumor initiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925196PMC
http://dx.doi.org/10.1101/2024.02.23.581815DOI Listing

Publication Analysis

Top Keywords

cisplatin resistance
20
tumor initiation
16
small-cell lung
12
ksr1
11
cisplatin
9
resistance
9
sclc
9
ksr1 mediates
8
lung cancer
8
molecular scaffold
8

Similar Publications