Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-Newtonian fluid flow is significant in engineering and biomedical applications such as thermal exchangers, electrical cooling mechanisms, nuclear reactor cooling, drug delivery, blood flow analysis, and tissue engineering. The Caputo operator has emerged as a prevalent tool in fractional calculus, garnering widespread recognition. This research aims to introduce a novel derivative by merging the proportional and Caputo operators, resulting in the fractional operator known as the constant proportional Caputo. In order to demonstrate this newly defined operator's dynamic qualities, it was employed in the analysis of the unsteady Casson flow model. In addition, the current work shows an analytical analysis to determine the Soret effect on the fractionalized MHD Casson fluid over an oscillating vertical plate. Fractional partial differential equations (PDEs) are used to formulate the problem along with IBCs. The introduction of appropriate nondimensional variables converts the PDEs into dimensionless form. The precise solutions to the fractional governing PDEs are then determined by the Laplace transform method. Velocity, concentration, and temperature profiles; the impacts of the Prandtl number; fractional parameter β and γ; and Soret and Schmidt numbers are graphically depicted. The profiles of temperature, concentration, and velocity rise with rising time and fractional parameters. Interestingly, as the Casson flow parameter is higher, fluid velocity decreases closest to the plate but increases away from the plate. Tables showing the findings for the skin-friction coefficient, Sherwood, and Nusselt numbers for a range of flow-controlling parameter values are provided. Furthermore, an investigation is undertaken to compare fractionalized and ordinary velocity fields. The results suggest that the fractional model employing a constant proportional derivative exhibits a quicker decay than the model incorporating conventional Caputo and Caputo-Fabrizio operators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918829PMC
http://dx.doi.org/10.1021/acsomega.3c07311DOI Listing

Publication Analysis

Top Keywords

constant proportional
12
proportional caputo
12
mhd casson
8
casson fluid
8
fractional
8
casson flow
8
caputo
5
soret mhd
4
casson
4
fluid
4

Similar Publications

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.

View Article and Find Full Text PDF

This study aimed to characterize motor noise in human standing balance and uncover mechanisms that enable the nervous system to robustly sense and control upright posture despite this variability. We conducted three experiments using a robotic balance simulator. First, we quantified the natural variability of ankle torques, revealing that torque variability was stable within preferred postures and increased only at more extreme orientations.

View Article and Find Full Text PDF

An interferometer used for displacement measurement is typically adjusted to the center or another appropriate point of the interferometer fringe as a working point to yield maximum detection sensitivity and linearity. The interferometer is prone to varying misalignment in the course of measurements, most noticeable due to thermal drift affecting the interferometer dimensions. We introduce an automatic correction mechanism based on a proportional/integral (PI) control loop to remove any error in the alignment of the fiber interferometer, specifically long-term drift.

View Article and Find Full Text PDF

Despite growth being fundamental to all aspects of cell biology, we do not yet know its organizing principles in eukaryotic cells. Classic models derived from the bacteria E. coli posit that protein-synthesis rates are set by mass-action collisions between charged tRNAs produced by metabolic enzymes and mRNA-bound ribosomes.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) substantially fuels the worldwide escalation in both morbidity and mortality. The hemoglobin glycation index (HGI) is linked to a range of undesirable outcomes, but its relationship with short-term outcomes in AMI patients has not been explored. This study analyzed data from 1008 first-time ICU AMI patients in the MIMIC-IV 3.

View Article and Find Full Text PDF