98%
921
2 minutes
20
The properties of lithium metal are key parameters in the design of lithium-ion and lithium-metal batteries. They are difficult to probe experimentally due to the high reactivity and low melting point of lithium as well as the microscopic scales at which lithium exists in batteries where it is found to have enhanced strength, with implications for dendrite suppression strategies. Computationally, there is a lack of empirical potentials that are consistently quantitatively accurate across all properties, and ab initio calculations are too costly. In this work, we train a machine learning interaction potential on density functional theory (DFT) data to state-of-the-art accuracy in reproducing experimental and ab initio results across a wide range of simulations at large length and time scales. We accurately predict thermodynamic properties, phonon spectra, temperature dependence of elastic constants, and various surface properties inaccessible using DFT. We establish that there exists a weak Bell-Evans-Polanyi relation correlating the self-adsorption energy and the minimum surface diffusion barrier for high Miller index facets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918842 | PMC |
http://dx.doi.org/10.1021/acsomega.3c10014 | DOI Listing |
Inorg Chem
September 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
Isovalent anion substitution has been shown to have a tremendous effect on the transport properties in lithium halide solid ionic conductors. Although sodium-ion solid state batteries based on chloride ionic conductors have recently gathered significant attention, investigations of anion substitution in sodium containing chlorides remain scarce. Here, we investigate the role of Br isoelectronic anion substitution in a perovskite-related compound with nominal composition of NaTaCl.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2025
Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland. Electronic address:
The rapid evolution of microelectronics requires materials that combine exceptional strength, ductility, and electrical conductivity for joining applications and durable lithium-ion battery anodes. Nanotwinned Cu (nt-Cu) surpasses conventional strengthening approaches, which often compromise ductility and conductivity, by using nanoscale twin boundaries to enhance both mechanical and electrical properties. This review examines the thermomechanical characteristics, fabrication methods, multiscale mechanistic insights, and technological applications of nt-Cu, bridging fundamental science with engineering practice.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:
In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.
View Article and Find Full Text PDF