98%
921
2 minutes
20
The outermost layer of centrosomes, called pericentriolar material (PCM), organizes microtubules for mitotic spindle assembly. The molecular interactions that enable PCM to assemble and resist external forces are poorly understood. Here, we use crosslinking mass spectrometry (XL-MS) to analyze PLK-1-potentiated multimerization of SPD-5, the main PCM scaffold protein in C. elegans. In the unassembled state, SPD-5 exhibits numerous intramolecular crosslinks that are eliminated after phosphorylation by PLK-1. Thus, phosphorylation induces a structural opening of SPD-5 that primes it for assembly. Multimerization of SPD-5 is driven by interactions between multiple dispersed coiled-coil domains. Structural analyses of a phosphorylated region (PReM) in SPD-5 revealed a helical hairpin that dimerizes to form a tetrameric coiled-coil. Mutations within this structure and other interacting regions cause PCM assembly defects that are partly rescued by eliminating microtubule-mediated forces, revealing that PCM assembly and strength are interdependent. We propose that PCM size and strength emerge from specific, multivalent coiled-coil interactions between SPD-5 proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921949 | PMC |
http://dx.doi.org/10.1083/jcb.202306142 | DOI Listing |
ACS Chem Biol
June 2025
School of Chemistry, University of Birmingham, Edgbaston B15 2TT, U.K.
Self-assembled peptides are promising templates for the design of inhibitors of protein-protein interactions (PPIs) because they can be endowed with affinity- and selectivity-defining amino acids alongside favorable physicochemical properties such as solubility and stability. Here, we describe a tunable coiled-coil scaffold and its interaction with MCL-1, an α-helix-binding antiapoptotic protein and important target in oncology. We explore the role of oligomerization, multivalency, and cooperativity in PPI inhibition.
View Article and Find Full Text PDFACS Macro Lett
April 2025
Leibniz-Institut für Polymerforschung, Institut Theorie der Polymer, 01069, Dresden, Germany.
Spatial organization is fundamental to cells, with biomolecular condensates as a key subset. Many studies show that folded domains play important roles in condensate formation by facilitating interactions. However, little is known about how the geometry and structure of folded domains impact condensate formation.
View Article and Find Full Text PDFNat Commun
January 2025
PSI Center for Life Sciences, Villigen PSI, Switzerland.
Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division.
View Article and Find Full Text PDFBiophys Chem
March 2025
Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India. Electronic address:
Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States.
Owing to their synthetic accessibility and protein-mimetic features, peptides represent an attractive biomolecular building block for the fabrication of artificial biomimetic materials with emergent properties and functions. Here, we expand the peptide building block design space through unveiling the design, synthesis, and characterization of novel, multivalent peptide macrocycles (96mers), termed coiled coil peptide tiles (CCPTs). CCPTs comprise multiple orthogonal coiled coil peptide domains that are separated by flexible linkers.
View Article and Find Full Text PDF