Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study aimed to investigate the effect of adding ficin-hydrolyzed wheat gluten at different levels (0%, 1%, 2%, 4%) on bread quality, and in vitro antioxidant activity before and after simulated gastrointestinal digestion. Our findings revealed that the incorporation of the generated wheat gluten hydrolysates (WGH) up to 4 g per 100 g flour positively affected the technological and physical-chemical characterizations of breads, including dough rheological properties, color, specific volume, and moisture. The texture profile analysis indicated reductions in hardness, springiness, and chewiness of the breads, and confirmed anti-staling properties during storage. The enriched breads received satisfactory scores from the sensory panel and were perceived as less stale after a 4-day period of storage. The aroma score of the 4% WGH bread was significantly higher than other treatments. Regarding taste, the 4% WGH bread scored the lowest, but the obtained value was not statistically significant. The enriched breads exhibited DPPH, ABTS radical scavenging, and Fe chelation abilities that increased in response to higher levels of hydrolysate incorporation, and these antioxidant activities were enhanced after simulated gastrointestinal digestion. Our findings confirm that it is possible to apply ficin-generated WGH to enhance physicochemical, nutritional, and biological quality of bread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916597 | PMC |
http://dx.doi.org/10.1002/fsn3.3871 | DOI Listing |