98%
921
2 minutes
20
Single-wall nanotubes of isostructural AsPSSe ( = 0, 1) are grown from solid-state reaction of stoichiometric amounts of the elements. The structure of AsPS was determined using single-crystal X-ray diffraction and refined in space group . The infinite, single-walled AsPS nanotubes have an outer diameter of ≈1.1 nm and are built of corner-sharing PS tetrahedra and AsS trigonal pyramids. Each nanotube is nearly hexagonal, but the ≈3.4 Å distance between S atoms on adjacent nanotubes allows them to easily slide past one another, resulting in the loss of long-range order. Substituting S with Se disrupted the crystallization of the nanotubes, resulting in amorphous products that precluded the determination of the structure for AsPSSe. P solid-state NMR spectroscopy indicated a single unique tetrahedral P environment in AsPS and five different P environments all with different degrees of Se substitution in AsPSSe. Optical absorption spectroscopy revealed an energy band gap of 2.7 to 2.4 eV for AsPS and AsPSSe, respectively. Individual AsPS microfibers showed a bulk conductivity of 3.2 × 10 S/cm and a negative photoconductivity effect under the illumination of light (3.06 eV) in ambient conditions. Thus, intrinsic conductivity originates from hopping through empty trap states along the length of the AsPS nanotubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c03952 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
J Med Microbiol
September 2025
Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.
For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
School of Nursing, University of Minho, Braga, Portugal.
Background: The spread of misinformation on social media poses significant risks to public health and individual decision-making. Despite growing recognition of these threats, instruments that assess resilience to misinformation on social media, particularly among families who are central to making decisions on behalf of children, remain scarce.
Objective: This study aimed to develop and evaluate the psychometric properties of a novel instrument that measures resilience to misinformation in the context of social media among parents of school-age children.
JMIR Hum Factors
September 2025
KK Women's and Children's Hospital, Singapore, Singapore.
Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDF