98%
921
2 minutes
20
In the design of thermally activated delayed fluorescence (TADF) materials, narrow-band emission is of particular importance for the development of organic light-emitting diodes (OLEDs). In this work, we proposed a new strategy for designing TADF molecules utilizing degenerate nonbonding (NB) orbitals of diradical parent molecules, and these designed molecules are termed NB-TADF molecules. Based on this strategy, a series of NB-TADF molecules is finely designed and systematically studied by theoretical calculations. Taking advantage of the nonbonding properties, these NB-TADF molecules exhibit desirable narrowband emissions and high quantum yields. More importantly, the emission bands can be easily tuned from blue to near-infrared by changing the conjugate length of the parent group in the NB-TADF molecules. We hope that this new strategy can open a new door for the design of novel TADF materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00146 | DOI Listing |
J Phys Chem Lett
March 2024
Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.
In the design of thermally activated delayed fluorescence (TADF) materials, narrow-band emission is of particular importance for the development of organic light-emitting diodes (OLEDs). In this work, we proposed a new strategy for designing TADF molecules utilizing degenerate nonbonding (NB) orbitals of diradical parent molecules, and these designed molecules are termed NB-TADF molecules. Based on this strategy, a series of NB-TADF molecules is finely designed and systematically studied by theoretical calculations.
View Article and Find Full Text PDF