A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

IcoConv : Explainable brain cortical surface analysis for ASD classification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902712PMC
http://dx.doi.org/10.1007/978-3-031-46914-5_20DOI Listing

Publication Analysis

Top Keywords

subsequently analyzed
8
icoconv explainable
4
brain
4
explainable brain
4
brain cortical
4
surface
4
cortical surface
4
surface analysis
4
asd
4
analysis asd
4

Similar Publications