A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of starch-based films reinforced with curcumin-loaded nanocomplexes: Characterization and application in the preservation of blueberries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In current study, curcumin-loaded bioactive nanocomplexes (Cur NCs) (2 %, 5 %, 8 %, and 11 %) were used to prepare corn starch (CS)-based composite films (CS-Cur NCs). Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy revealed that Cur NCs were uniformly dispersed in the polymer matrix via physical interaction. Moreover, the mechanical, gas barrier, hydrophobicity, optical, and thermal properties and the antioxidant activity of composite films were potentially improved with the addition of Cur NCs. Subsequently, CS-based film with 11 % Cur NCs exhibited high antioxidant activity (the scavenging rates of DPPH and ABTS are 50.07 % ± 0.82 % and 65.26 % ± 1.60 %, respectively) and was used for packaging blueberries. Compared with the control, the CS-Cur NCs packaging treatment effectively improved the appearance and nutrition of blueberries, and maintained the high activity of several antioxidant enzymes. Furthermore, CS-Cur NCs packaging treatment significantly improved the ascorbic acid (AsA) and glutathione (GSH) levels, thus regulating the AsA-GSH cycle system and suppressing the accumulation of reactive oxygen species (ROS). In summary, the CS-Cur NCs packaging could effectively conserve the postharvest quality of blueberries by improving antioxidant enzyme activity and suppressing excessive accumulation of ROS, which contributes to the development of bioactive packaging and provides novel insights into the preservation of blueberries. This work demonstrates that the development of active packaging is promising to absorb the oxidative radicals from food, and protect the food from inherent and external factors, thus enhancing the quality, security, and shelf-life of the food during storage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130464DOI Listing

Publication Analysis

Top Keywords

cur ncs
16
cs-cur ncs
16
ncs packaging
12
preservation blueberries
8
ncs
8
composite films
8
antioxidant activity
8
packaging treatment
8
packaging
6
blueberries
5

Similar Publications