A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2024.3371465DOI Listing

Publication Analysis

Top Keywords

hammerstein model
20
adaptive hammerstein
16
model
13
forgetting factor
12
factor recursive
12
recursive squares
12
proposed adaptive
12
model based
12
adaptive model
12
variable forgetting
8

Similar Publications