Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: This study aimed to develop a machine learning (ML) model to identify the optimal situation wherein double-level osteotomy (DLO) is favored for severe varus knees by analyzing unfavorable outcomes. This study hypothesized that there are the most favorable algorithms and contributing factors for identifying the optimal situation favoring DLO over opening-wedge high tibial osteotomy (OWHTO).
Methods: Data were retrospectively collected from patients who underwent OWHTO (505 knees). Unfavorable outcome parameters were defined as follows: (1) medial proximal tibial angle (MPTA) > 95°, (2) joint line convergence angle (JLCA) > 4° (insufficient medial release), (3) JLCA < 0° (medial instability), (4) recurrence of varus deformity, and (5) lateral hinge fracture. The input data for the ML model included demographic data and preoperative radiological and intra-operative factors. The ML model was used to evaluate overall and to evaluate each unfavorable outcome. Interpretation by the model was performed by SHapley Additive exPlanations.
Results: The unfavorable group had a larger JLCA and MPTA preoperatively than the favorable group in the conventional comparison. The light gradient boosting machine (LGBM) demonstrated the highest AUC of 0.66 and F-1 score of 0.72 among the ML algorithms. In the overall assessment, the preoperative weight-bearing line ratio (WBLR) was the factor that contributed the most, followed by the preoperative JLCA and the ΔWBLR. ΔWBLR and the preoperative JLCA were the contributing factors for each outcome.
Conclusions: The LGBM model was superior in predicting the optimal situations favoring DLO over OWHTO. Preoperative WBLR, preoperative JLCA, and ΔWBLR significantly contributed to the unfavorable outcomes overall and for each outcome in the ML model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.knee.2024.02.006 | DOI Listing |