98%
921
2 minutes
20
The bulky β-diketiminate ligand frameworks [BDI] and [BDI] (BDI=[HC{C(Me)N-Dipp/Ar}] (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDI)Eu(μ-H)], [(BDI)Eu(μ-H)] and [(BDI)Eu(μ-H)], respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of β-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400681 | DOI Listing |
Org Biomol Chem
September 2025
School of Chemistry & Environment; Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kun-ming 650504, China.
The present study utilizes density functional theory (DFT) to systematically investigate the effect of a ligand on the mechanism of nickel-catalyzed asymmetric hydrogenation of cyclic -sulfonyl imines, employing alcohol protons as the hydrogen source. By comparing the free energies of three catalytic pathways involving various coordinated nickel complexes with different ligands, we identify that the enantio-determining step is the nickel-hydride transfer. Notably, the reaction pathway initiated by the Ni(0) species through oxidative addition of alcohol is determined to be the most favorable.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium.
We model Auger spectra using second-order Møller-Plesset perturbation (MP2) theory combined with complex-scaled basis functions. For this purpose, we decompose the complex MP2 energy of the core-hole state into contributions from specific decay channels and propose a corresponding equation-of-motion (EOM) method for computing the doubly ionized final states of Auger decay. These methods lead to significant savings in computational cost compared to our recently developed approaches based on coupled-cluster theory [F.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
University of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany.
Nitrogenase accumulates reducing equivalents in hydrides and couples H elimination to the reductive binding of N at a di-iron edge of its FeMo cofactor (FeMoco). Here, we describe that oxidation of a pyrazolato-based dinickel(II) dihydride complex K[L(Ni-H)] (), either electrochemically or chemically using H or ferrocenium, triggers H elimination and binding of N in a constrained and extremely bent bridging mode in [LNi(μ-N)] (). Spectroscopic and computational evidence indicate that the electronic structure of is best described as Ni-(N)-Ni, with a rare 1e reduced and significantly activated N substrate ( = 1894 cm).
View Article and Find Full Text PDFChem Asian J
September 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
In this study, we report NNN pincer bis-imino pyridine-supported copper(II) catalysts for the sustainable, eco-friendly, and practical multi-component synthesis (MCS) of pyrazolines and pyrimidines driven by the acceptorless dehydrogenation of benzyl alcohols. Herein, we synthesize and characterize two well-defined phosphine-free NNN pincer-supported copper(II) complexes, C1 and C2, using IR, UV-vis, HRMS, and single-crystal XRD. Utilizing these complexes, we develop the first multi-component synthetic route for 1,3,5-trisubstituted pyrazolines (TriPyz) from the dehydrogenative coupling of renewable benzyl alcohols and aromatic ketones with phenyl hydrazine, generating ecologically benign HO and H as side products.
View Article and Find Full Text PDFJ Org Chem
September 2025
Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
The reaction mechanism of the excited-state copper-catalyzed cascade synthesis of α,β-unsaturated-γ-lactams from aroyl chlorides, acrylamides, and -hexanol has been systematically investigated using density functional theory (DFT) calculations. The reaction consists of four elementary steps: initiation of aroyl radical formation from aroyl chlorides by the excited-state Cu-Complex; subsequent radical relay between the aroyl radical and acrylamides leading to C-C bond formation; coupling of the C-N bond through the activation of N-H bond/coordination site migration facilitated by a Cu-Complex resulting in the formation of a five-membered ring scaffold; and then the functionalization of the γ-C of lactam to introduce alkoxy or hydride groups is achieved through electrophilic substitution. The single-carbon atom insertion is realized by the radical relay and copper-catalyzed radical polar cross-coupling strategy.
View Article and Find Full Text PDF