A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In defense of local descriptor-based few-shot object detection. | LitMetric

In defense of local descriptor-based few-shot object detection.

Front Neurosci

Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing Information Science and Technology University, Beijing, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

State-of-the-art image object detection computational models require an intensive parameter fine-tuning stage (using deep convolution network, etc). with tens or hundreds of training examples. In contrast, human intelligence can robustly learn a new concept from just a few instances (i.e., few-shot detection). The distinctive perception mechanisms between these two families of systems enlighten us to revisit classical handcraft local descriptors (e.g., SIFT, HOG, etc.) as well as non-parametric visual models, which innately require no learning/training phase. Herein, we claim that the inferior performance of these local descriptors mainly results from a lack of global structure sense. To address this issue, we refine local descriptors with spatial contextual attention of neighbor affinities and then embed the local descriptors into discriminative subspace guided by Kernel-InfoNCE loss. Differing from conventional quantization of local descriptors in high-dimensional feature space or isometric dimension reduction, we actually seek a brain-inspired few-shot feature representation for the object manifold, which combines data-independent primitive representation and semantic context learning and thus helps with generalization. The obtained embeddings as pattern vectors/tensors permit us an accelerated but non-parametric visual similarity computation as the decision rule for final detection. Our approach to few-shot object detection is nearly learning-free, and experiments on remote sensing imageries (approximate 2-D affine space) confirm the efficacy of our model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894920PMC
http://dx.doi.org/10.3389/fnins.2024.1349204DOI Listing

Publication Analysis

Top Keywords

local descriptors
20
object detection
12
few-shot object
8
non-parametric visual
8
detection
5
local
5
descriptors
5
defense local
4
local descriptor-based
4
few-shot
4

Similar Publications