Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A 3D manipulation technique based on two optothermally generated and actuated surface-bubble robots is proposed. A single laser beam can be divided into two parallel beams and used for the generation and motion control of twin bubbles. The movement and spacing control of the lasers and bubbles can be varied directly and rapidly. Both 2D and 3D operations of micromodules were carried out successfully using twin bubble robots. The cooperative manipulation of twin bubble robots is superior to that of a single robot in terms of stability, speed, and efficiency. The operational technique proposed in this study is expected to play an important role in tissue engineering, drug screening, and other fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892707 | PMC |
http://dx.doi.org/10.3390/mi15020230 | DOI Listing |