A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models. | LitMetric

Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models.

Methods Mol Biol

Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Embedded extrusion 3D bioprinting is a rapidly emerging additive manufacturing methodology that provides a precise spatial deposition of synthetic or natural-origin low-viscosity bioinks during the extrusion printing process. Such a strategy has to date unlocked the freeform extrusion biofabrication of complex micro-to-macro-scale living architectures for numerous applications, including tissue engineering and in vitro disease modeling. In this chapter, we describe a suspension bioprinting methodology leveraging a continuous viscoelastic biopolymer supporting bath functionalized with divalent calcium cations to enable a rapid processing of user-defined bioinks toward architecturally complex 3D in vitro tumor models. This highly simple and cost-effective viscoelastic supporting bath enables a full freeform biofabrication of cell-laden 3D tumor-mimetic architectures that exhibit structural stability in culture post-printing. The cytocompatibility of the supporting bath, its ease of removal from biofabricated living constructs, and its adaptability for processing different ECM-mimetic bioinks open avenues for multi-scale fabrication of numerous types of physiomimetic 3D tumor models for preclinical screening of candidate therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3674-9_18DOI Listing

Publication Analysis

Top Keywords

tumor models
12
vitro tumor
8
supporting bath
8
embedded bioprinting
4
bioprinting engineering
4
engineering miniaturized
4
miniaturized vitro
4
models embedded
4
embedded extrusion
4
extrusion bioprinting
4

Similar Publications