A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Double-Barrel Perfusion System for Modification of Luminal Contents of Intestinal Organoids. | LitMetric

Double-Barrel Perfusion System for Modification of Luminal Contents of Intestinal Organoids.

Methods Mol Biol

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organoids are 3D cultures of self-organized adult or pluripotent stem cells with an epithelial membrane enclosing a defined fluid-filled lumen. These organoids have been demonstrated with a wide range of organotypic tissue types, but the enclosed nature of the structure restricts access to the lumen and apical surface of the cell membrane. To increase the potential applications of organoids, new technologies are required to provide access to the lumen of the organoid and apical surface of the epithelial cell membrane to enable new biomedical studies. This chapter details a method to access the lumen and apical surface of an organoid utilizing a double-barrel pulled glass capillary and pressure-based pump. The organoid perfusion system uses a three-axis micromanipulator to position the double-barrel capillary to pierce the organoid with the tip of the capillary. Each barrel of the double-barrel capillary is controlled independently with the pressure-based pump to allow injection and removal of material into and from the lumen. Additionally, the organoid is immobilized with a custom-designed PDMS organoid holder. The design of the components for the organoid perfusion system and details on their use are presented here and can be utilized as the basis to enable a wide range of organoid studies including but not limited to modifying luminal contents and apical cell membrane interactions during organoid cultures, recapitulation of physiological flow within the normally static organoid lumen, and effects of mechanical strain on organoid cell development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3674-9_14DOI Listing

Publication Analysis

Top Keywords

perfusion system
12
access lumen
12
apical surface
12
cell membrane
12
organoid
11
luminal contents
8
wide range
8
lumen apical
8
pressure-based pump
8
organoid perfusion
8

Similar Publications