A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lessons learned: establishing a CLIA-equivalent laboratory for targeted mass spectrometry assays - navigating the transition from research to clinical practice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mass spectrometry (MS) assays offer exceptional capabilities in high multiplexity, specificity, and throughput. As proteomics technologies continue advancements to identify new disease biomarkers, transition of these innovations from research settings to clinical applications becomes imperative. To meet the rigorous regulatory standards of clinical laboratories, development of a clinical protein MS assay necessitates adherence to stringent criteria. To illustrate the process, this project focused on using thyroglobulin (Tg) as a biomarker and an immuno-multiple reaction monitoring (iMRM) MS-based assay as a model for establishing a Clinical Laboratory Improvement Amendments (CLIA) compliant laboratory within the Centers of Genomic and Precision Medicine, National Taiwan University. The chosen example also illustrates the clinical utility of MS assays to complement conventional immunoassay-based methods, particularly in cases where the presence of autoantibodies in 10-30% of patients hinders accuracy. The laboratory design entails a comprehensive coordination in spatial layout, workflow organization, equipment selection, ventilation systems, plumbing, electrical infrastructure, documentation procedures, and communication protocols. Practical aspects of the transformation process, including preparing laboratory facilities, testing environments, instrument validation, assay development and validation, quality management, sample testing, and personnel competency, are discussed. Finally, concordant results in proficiency testing demonstrate the harmonization with the University of Washington Medical Center and the quality assurance of the CLIA-equivalent Tg-iMRM MS assay established in Taiwan. The realization of this model protein MS assay in Taiwan highlights the feasibility of international joint development and provides a detailed reference map to expedite the implementation of more MS-based protein assays in clinical laboratories for patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882921PMC
http://dx.doi.org/10.1186/s12014-024-09455-yDOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
spectrometry assays
8
clinical laboratories
8
protein assay
8
clinical
7
laboratory
5
assay
5
lessons learned
4
learned establishing
4
establishing clia-equivalent
4

Similar Publications