98%
921
2 minutes
20
Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L, 2.19 g L and 2.47 g L, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L·d, 16.5 mg L·d and 19.4 mg L·d, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141515 | DOI Listing |
J Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFPLoS One
September 2025
Sterile Processing Department, Sichuan GEM Flower Hospital, North Sichuan Medical College, Chengdu, China.
Background: Luminal instruments are characterized by their slender internal lumens, which make them particularly challenging to clean and dry. A common drying method used by Sterile Processing Department (SPD) technicians involves blowing high-pressure air into one end of the lumen to expel moisture. However, this process generates a significant amount of aerosols that may contain bacteria, viruses, and other microorganisms.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDF