A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning solutions for renewable energy systems: Applications, challenges, limitations, and future directions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Paris Agreement, a landmark international treaty signed in 2016 to limit global warming to 2°C, has urged researchers to explore various strategies for achieving its ambitious goals. While Renewable Energy (RE) innovation holds promise, it alone may not be sufficient as critical deadlines approach. This field of research presents numerous challenges, foremost among them being the costliness of materials involved. However, emerging advancements in Machine Learning (ML) technologies provide a glimmer of hope; these sophisticated algorithms can accurately predict the output of energy systems without relying on physical resources and instead leverage available data from diverse energy platforms that have emerged over recent decades. The primary objective of this paper is to comprehensively explore various ML techniques and algorithms in the context of Renewable Energy Systems (RES). The investigation will address several vital inquiries, including identifying and evaluating existing RE technologies, assessing their potential for further advancement, and thoroughly analyzing the challenges and limitations associated with their deployment and testing. Furthermore, this research examines how ML can effectively overcome these obstacles by enhancing RES performance. By identifying future research opportunities and outlining potential directions for improvement, this work seeks to contribute to developing environmentally sustainable energy systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.120392DOI Listing

Publication Analysis

Top Keywords

energy systems
16
renewable energy
12
machine learning
8
challenges limitations
8
energy
6
learning solutions
4
solutions renewable
4
systems
4
systems applications
4
applications challenges
4

Similar Publications