Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Multimodal image fusion involves tasks like pan-sharpening and depth super-resolution. Both tasks aim to generate high-resolution target images by fusing the complementary information from the texture-rich guidance and low-resolution target counterparts. They are inborn with reconstructing high-frequency information. Despite their inherent frequency domain connection, most existing methods only operate solely in the spatial domain and rarely explore the solutions in the frequency domain. This study addresses this limitation by proposing solutions in both the spatial and frequency domains. We devise a Spatial-Frequency Information Integration Network, abbreviated as SFINet for this purpose. The SFINet includes a core module tailored for image fusion. This module consists of three key components: a spatial-domain information branch, a frequency-domain information branch, and a dual-domain interaction. The spatial-domain information branch employs the spatial convolution-equipped invertible neural operators to integrate local information from different modalities in the spatial domain. Meanwhile, the frequency-domain information branch adopts a modality-aware deep Fourier transformation to capture the image-wide receptive field for exploring global contextual information. In addition, the dual-domain interaction facilitates information flow and the learning of complementary representations. We further present an improved version of SFINet, SFINet++, that enhances the representation of spatial information by replacing the basic convolution unit in the original spatial domain branch with the information-lossless invertible neural operator. We conduct extensive experiments to validate the effectiveness of the proposed networks and demonstrate their outstanding performance against state-of-the-art methods in two representative multimodal image fusion tasks: pan-sharpening and depth super-resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3368112 | DOI Listing |