Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type. In moraine substrates, Actinomycetota and Cercozoa were the most abundant bacterial and eukaryotic phyla, whereas on gneiss, granite and marble substrates, Cyanobacteriota and Metazoa were the dominant bacterial and eukaryotic taxa. However, at lower taxonomic level, a distinct differentiation was observed within the Cyanobacteriota phylum depending on substrate type, with granite being dominated by the Nostocaceae family and marble by the Chroococcidiopsaceae family. Surprisingly, metazoans were relatively abundant according to the 18S rRNA dataset, even in samples from the most arid sites, such as moraines in Austkampane and Widerøefjellet ("Dry Valley"). Overall, our study shows that different substrate types support distinct microbial communities, and that mineral soil diversity is a major determinant of terrestrial microbial diversity in inland Antarctic nunataks and valleys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877063PMC
http://dx.doi.org/10.3389/fmicb.2024.1316633DOI Listing

Publication Analysis

Top Keywords

substrate type
12
nunataks valleys
8
sør rondane
8
rondane mountains
8
mountains east
8
east antarctica
8
depending substrate
8
bacterial eukaryotic
8
geology defines
4
defines microbiome
4

Similar Publications

Prolyl endopeptidase (PREP) drives neurodegenerative diseases through dual mechanisms involving enzymatic activity and protein-protein interactions (PPIs), yet current inhibitors predominantly target single pathways Prolyl endopeptidase (PREP) fuels neurodegeneration via enzymatic cleavage and pathological PPIs, yet current inhibitors usually target only one facet. In this study, leveraging our developed high-sensitivity and high-specificity near-infrared fluorescent probe Z-GP-ACM, we established and validated a screening platform for PREP inhibitors with mouse brain S9 instead of the human recombinant PREP. Screening a library of 110 natural compounds identified a series of flavonoid derivatives (FV64-FV68) as potent PREP inhibitors, with FV67 and FV68 exhibiting particularly strong inhibition (IC values of 0.

View Article and Find Full Text PDF

Background: Blood biomarkers can characterize the atrial substrate, helping to elucidate mechanisms of atrial fibrillation (AF) development. Understanding whether sedentary behavior affects AF-related biomarkers is key for future prevention strategies.

Methods: We studied 252 participants in PREDIMED-Plus, a multicenter randomized trial in Spain for the primary prevention of cardiovascular disease.

View Article and Find Full Text PDF

In this letter, the pull-off forces of adsorbed films of four Bap1-inspired peptides in various solvents were investigated on negatively charged mica substrates using the surface forces apparatus (SFA), complemented with dynamic light scattering (DLS) for characterizing the aggregation behavior of peptides in solution. Bap1-inspired peptides consisted of the 57 amino acid wild-type sequence (WT); a scrambled version of the WT used to investigate the impact of the primary amino acid sequence in pull-off forces (Scr); a ten amino acid sequence rich in hydrophobic content (CP) of the WT sequence, and an eight amino acid sequence (Sh1) that corresponds to the pseudo-repeating sequence in the 57 AA. SFA results showed remarkable pull-off forces for CP, particularly in the presence of salts: measured pull-off forces were 26.

View Article and Find Full Text PDF

Engineered luciferases have transformed biological imaging and sensing, yet optimizing NanoLuc luciferase (NLuc) remains challenging due to the inherent stability-activity trade-off and its limited sequence homology with characterized proteins. We report a hybrid approach that synergistically integrates computational deep learning with structure-guided rational design to develop enhanced NLuc variants that improve thermostability and thereby activity at elevated temperatures. By systematically analyzing libraries of engineered variants, we established that modifications to termini and loops distal from the catalytic center, combined with preservation of allosterically coupled networks, effectively enhance thermal resilience while maintaining enzymatic function.

View Article and Find Full Text PDF

Visible-Light-Promoted Hydroxyalkylation of Heterocycles with α-Oxocarboxylic Acids.

J Org Chem

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

We herein report the Minisci-type redox-neutral decarboxylative hydroxyalkylation of heteroarenes under photocatalyst- and transition-metal-free conditions. This methodology tolerates various functional groups that can be subsequently elaborated. Upon absorption of photons, the excited state of the α-oxocarboxylic acid forms an acyl radical, which adds to the protonated heteroarene to give the desired product after a spin center shift (SCS), reduction, and deprotonation.

View Article and Find Full Text PDF