Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Throughout the last decades, the emergence of zoonotic diseases and the frequency of disease outbreaks have increased substantially, fuelled by habitat encroachment and vectors overlapping with more hosts due to global change. The virulence of pathogens is one key trait for successful invasion. In order to understand how global change drivers such as habitat homogenization and climate change drive pathogen virulence evolution, we adapted an established individual-based model of host-pathogen dynamics. Our model simulates a population of social hosts affected by a directly transmitted evolving pathogen in a dynamic landscape. Pathogen virulence evolution results in multiple strains in the model that differ in their transmission capability and lethality. We represent the effects of global change by simulating environmental changes both in time (resource asynchrony) and space (homogenization). We found an increase in pathogenic virulence and a shift in strain dominance with increasing landscape homogenization. Our model further indicated that lower virulence is dominant in fragmented landscapes, although pulses of highly virulent strains emerged under resource asynchrony. While all landscape scenarios favoured co-occurrence of low- and high-virulent strains, the high-virulence strains capitalized on the possibility for transmission when host density increased and were likely to become dominant. With asynchrony likely to occur more often due to global change, our model showed that a subsequent evolution towards lower virulence could lead to some diseases becoming endemic in their host populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877554PMC
http://dx.doi.org/10.1002/ece3.11065DOI Listing

Publication Analysis

Top Keywords

global change
16
resource asynchrony
12
virulence evolution
12
asynchrony landscape
8
landscape homogenization
8
directly transmitted
8
pathogen virulence
8
lower virulence
8
virulence
7
change
5

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Background: Dengue fever remains the most significant vector-borne disease in Southeast Asia, imposing a substantial burden on public health systems. Global warming and increased international mobility may exacerbate the disease's prevalence. Furthermore, the unprecedented COVID-19 pandemic may have influenced the epidemiological patterns of dengue.

View Article and Find Full Text PDF

Background And Objectives: Years before diagnosis of Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA), mild prodromal manifestations can be detected. Longitudinal follow-up of people with prodromal synucleinopathy, particularly idiopathic/isolated REM sleep behavior disorder (iRBD), enables in-depth clinical phenotyping of early disease, which could facilitate stratification for clinical trials, provide the definition of appropriate end points, or predict phenoconversion more precisely. The aim of this study was to update and expand on previous studies assessing clinical evolution from iRBD to clinically diagnosed disease, up to 14 years before diagnosis.

View Article and Find Full Text PDF

Cooling outweighs warming across phenological transitions in the Northern Hemisphere.

Proc Natl Acad Sci U S A

September 2025

Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.

View Article and Find Full Text PDF

Breaking the reproducibility barrier with standardized protocols for plant-microbiome research.

PLoS Biol

September 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Inter-laboratory replicability is crucial yet challenging in microbiome research. Leveraging microbiomes to promote soil health and plant growth requires understanding underlying molecular mechanisms using reproducible experimental systems. In a global collaborative effort involving five laboratories, we aimed to help advance reproducibility in microbiome studies by testing our ability to replicate synthetic community assembly experiments.

View Article and Find Full Text PDF