Identification of novel membrane markers in circulating tumor cells of mesenchymal state in breast cancer.

Biochem Biophys Rep

Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer metastasis is a major cause of cancer-related deaths worldwide. The ability to detect and monitor circulating tumor cells (CTCs) offers a promising approach to early detection and management of metastasis. Although studies on epithelial markers for CTC detection are actively underway, the discovery of mesenchymal markers has not been studied sufficiently. In this study, we developed a new pipeline to identify membrane markers in CTCs of mesenchymal state in breast cancer based on expression profiles of the 310 CTC samples. From the total CTC samples, only CTC samples in the mesenchymal state were collected by employing hierarchical clustering. In samples belonging to the mesenchymal state, we calculated the correlation coefficients between 1995 membrane genes and ZEB2, which was determined as the key mesenchymal signature, allowing the 84 positively correlated genes. Furthermore, to ensure clinical significance, Kaplan-Meier analysis were performed on the 124 breast cancer patients, resulting in the 14 genes predicting prognosis. By exploring genes commonly identified in the both analyses, F11R and PTGIR were characterized as membrane markers in CTCs of mesenchymal state in breast cancer, which were evaluated by enriched terms, literature evidence, and relevant molecular pathways. We expect that the results will be helpful to more effective strategies for metastasis management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875194PMC
http://dx.doi.org/10.1016/j.bbrep.2024.101652DOI Listing

Publication Analysis

Top Keywords

mesenchymal state
20
breast cancer
16
membrane markers
12
state breast
12
ctc samples
12
circulating tumor
8
tumor cells
8
markers ctcs
8
ctcs mesenchymal
8
mesenchymal
7

Similar Publications

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with high metastatic potential, limited treatment options, and low patient survival rates. By combining functional proteomics and genomics approaches, we identified an oncogenic transcriptional network in mesenchymal and invasive TNBC involving the glucocorticoid receptor (GR), GATA6, MYC, and AP-1 transcription factors. Although these transcription factors bound extensively to shared enhancers, they utilized different enhancer repertoires from this shared enhancer pool to drive distinct downstream oncogenic pathways.

View Article and Find Full Text PDF

Unraveling the Pivotal Role of LncRNA DUXAP9 in Cancer: Current Progress and Future Perspectives.

Curr Drug Targets

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.

View Article and Find Full Text PDF

Therapeutic potentials of mesenchymal stem cells and their extracellular vesicles on liver diseases by modulating mitochondrial function of macrophages.

Int Immunopharmacol

September 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen

Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.

View Article and Find Full Text PDF

Demystifying the link between periodontitis and oral cancer: a systematic review integrating clinical, pre-clinical, and in vitro data.

Cancer Metastasis Rev

September 2025

Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.

Chronic inflammation and microbial dysbiosis have been implicated in the development of head and neck squamous cell carcinoma (HNSCC), particularly oral cavity squamous cell carcinoma (OSCC). Periodontitis is a common chronic inflammatory disease characterized by the progressive destruction of tooth-supporting structures. While periodontitis Has been associated with an increased risk of OSCC in epidemiological and mechanistic studies, the strength of this association is unclear.

View Article and Find Full Text PDF