Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Skin aging is affected by a variety of factors, including ultraviolet rays, oxidative stress, medications, smoking, and genetics. Among them, photo-aging accounts for about 80% of skin aging. The present study was evaluated to verify the potential of larvae which has recently been attracting attention as an edible insect, as an anti-aging substance. UVB irradiation at 100 mJ/cm was sufficient to induce photo-aging of fibroblasts within 24 h, which was alleviated after treatment with 70% ethanol extract of larvae extract (ADLE). To obtain an extract from ADLE, which has a relatively high content of polyphenol compounds containing physiological activity, fractional solvent extraction was carried out using organic solvents such as hexane, chloroform, ethyl acetate, and butanol. Additionally, ethyl acetate and butanol fractions contributed to the inhibition of UVB-induced ROS production, cell damage, and senescence of fibroblasts. It was also confirmed that the two fractions can regulate the expression of MMP-1 and AP-1. In particular, the ethyl acetate fraction showed an excellent effect in recovering collagen decomposed by UVB. Therefore, these results suggest that ADLE has potential as a natural insect-derived biomaterial to inhibit UVB-induced photo-aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875253 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2024.101660 | DOI Listing |