98%
921
2 minutes
20
Objectives: The study aims to assess the capability of Quantitative Ultrasound (QUS) based on the backscatter coefficient (BSC) for classifying disease states, such as breast cancer response to neoadjuvant chemotherapy and quantifying fatty liver disease. We evaluate the effectiveness of an titanium (Ti) bead as a reference target in calibrating the system and mitigating attenuation and transmission loss effects on BSC estimation.
Methods: Traditional BSC estimation methods require external references for calibration, which do not account for ultrasound attenuation or transmission losses through tissues. To address this issue, we use an titanium (Ti) bead as a reference target, because it can be used to calibrate the system and mitigate the attenuation and transmission loss effects on estimation of the BSC. The capabilities of the calibration approach were assessed by quantifying consistency of BSC estimates from rabbit mammary tumors (). Specifically, mammary tumors were grown in rabbits and when a tumor reached 1 cm or greater in size, a 2-mm Ti bead was implanted into the tumor as a radiological marker and a calibration source for ultrasound. Three days later, the tumors were scanned with a L-14/5 38 array transducer connected to a SonixOne scanner with and without a slab of pork belly placed on top of the tumors. The pork belly acted as an additional source of attenuation and transmission loss. QUS parameters, specifically effective scatterer diameter (ESD) and effective acoustic concentration (EAC), were calculated using calibration spectra from both an external reference phantom and the Ti bead.
Results: For ESD estimation, the 95% confidence interval between measurements with and without the pork belly layer was (6.0,27.4) using the bead and (114, 135.1) with the external reference phantom. For EAC estimation, the 95% confidence interval were (-8.1, 0.5) for the bead and (-41.5, -32.2) for the phantom. These results indicate that the bead method shows reduced bias in QUS estimates due to intervening tissue losses.
Conclusions: The use of an Ti bead as a radiological marker not only serves its traditional role but also effectively acts as a calibration target for QUS methods. This approach accounts for attenuation and transmission losses in tissue, resulting in more accurate QUS estimates and offering a promising method for enhanced disease state classification in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871309 | PMC |
http://dx.doi.org/10.1101/2024.02.07.579320 | DOI Listing |
EMBO Mol Med
September 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.
Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.
View Article and Find Full Text PDFAerosp Med Hum Perform
September 2025
Introduction: Pilots have an increased incidence of cutaneous melanoma compared to the general population; occupational exposure to ultraviolet (UV) radiation is one of several potential risk factors. Cockpit windshields effectively block UVB (280-315 nm) but further analysis is needed for UVA (315-400 nm). The objective of this observational study was to assess transmission of UVA through cockpit windshields and to measure doses of UVA at pilots' skin under daytime flying conditions.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China.
Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
School of Forensic Science, National Forensic Sciences University, Gandhinagar, Gujarat, India.
Ingestible biosensors are a mix of advanced biomedical engineering, digital health and precision pharmacotherapy. These miniaturised electronic devices are encapsulated in biocompatible materials, which operate within gastrointestinal (GI) tract. This enables real-time monitoring of pharmacological and physiological parameters.
View Article and Find Full Text PDFACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDF