Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The transduction time between signal initiation and final response provides valuable information on the underlying signaling pathway, including its speed and precision. Furthermore, multi-modality in a transduction-time distribution indicates that the response is regulated by multiple pathways with different transduction speeds. Here, we developed a method called density physics-informed neural networks (Density-PINNs) to infer the transduction-time distribution from measurable final stress response time traces. We applied Density-PINNs to single-cell gene expression data from sixteen promoters regulated by unknown pathways in response to antibiotic stresses. We found that promoters with slower signaling initiation and transduction exhibit larger cell-to-cell heterogeneity in response intensity. However, this heterogeneity was greatly reduced when the response was regulated by slow and fast pathways together. This suggests a strategy for identifying effective signaling pathways for consistent cellular responses to disease treatments. Density-PINNs can also be applied to understand other time delay systems, including infectious diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873160 | PMC |
http://dx.doi.org/10.1016/j.patter.2023.100899 | DOI Listing |