A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bidimensional Dynamic Magnetic Levitation: Sequential Separation of Microplastics by Density and Size. | LitMetric

Bidimensional Dynamic Magnetic Levitation: Sequential Separation of Microplastics by Density and Size.

Anal Chem

Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is a current gap in sample preparation techniques integrating the separation of microplastics according to their different material types and particle sizes. We describe herein the Bidimensional Dynamic Magnetic Levitation (2D-MagLev) technique, enabling the resolution of mixtures of microplastics sorting them by plastic type and particle size. Separations are carried out in a bespoke flow cell sandwiched between two ring magnets and connected to programmable pumps for flow control. The first separation dimension is based on sequential increases in the concentration of a paramagnetic salt (MnCl), enabling magnetic levitation of microplastics with determined densities. The second dimension is based on increasing flow rate gradients and maintaining constant MnCl concentrations. This fractionates the magnetically levitating microplastics according to their different particle sizes. Microplastics are therefore collected by their increasing density, and the particles corresponding to each density are fractionated from smaller to larger size. Using polyethylene microspheres with defined density (1.03-1.13 g cm) and size (98-390 μm) as microplastic mimicking materials, we investigated their optimum threshold velocities for their size fractionation, potential effects of medium viscosity and sample loading, and types of flow rate gradients (linear, step). Performing a separation using a combination of step gradients in both MnCl concentration and flow rate, mixtures comprising microplastics of two different densities and three different particle sizes were separated. 2D-MagLev is simple, fast, versatile, and robust, opening new avenues to facilitate the study of the environmental presence and impact of microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c02918DOI Listing

Publication Analysis

Top Keywords

magnetic levitation
12
particle sizes
12
flow rate
12
bidimensional dynamic
8
dynamic magnetic
8
microplastics
8
separation microplastics
8
dimension based
8
rate gradients
8
size
5

Similar Publications