Seismic landslide susceptibility assessment using principal component analysis and support vector machine.

Sci Rep

School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Seismic landslides are dangerous natural hazards that can cause immense damage to human lives and property. Susceptibility assessment of earthquake-triggered landslides provides the scientific basis and theoretical foundation for disaster emergency management in engineering projects. However, landslide susceptibility assessment requires a massive amount of historical landslide data. Evidence of past landslide activities may be lost due to changes in geographical conditions and human factors over time. The lack of landslide data poses difficulties in assessing landslide susceptibility. The aim of this study is to establish a generalized seismic landslide susceptibility assessment model for applying it to the Dayong highway in the Chenghai area, where earthquakes occur frequently but with a lack of landslide data. The landslide data used comes from the 2014 Ludian Ms (Surface wave magnitude) 6.5 earthquake in a region with geographical conditions similar to those in the Chenghai area. The influencing factors considered include elevation, slope, slope aspect, distance to streams, distance to faults, geology, terrain wetness index, normalized difference vegetation index, epicenter distance and peak ground acceleration. The frequency ratio method is used to eliminate influencing factors with poor statistical dispersion of landslides. Principal component analysis (PCA) is utilized to reduce the dimensionality of landslide conditioning factors and to improve the transferability of the assessment model to different regions. A support vector machine model is used to establish the susceptibility assessment model. The results show that the accuracy of the PCA-SVM model reaches 93.6%. The landslide susceptibility of the Chenghai area is classified into 5 classes, with the "Very high" landslide susceptibility class accounting for 0.63%. The 13-km section in the middle of the Dayong highway, which accounts for 8.9%, is identified as the high-risk area most obviously impacted by seismic landslides. This study provides a new approach for seismic landslide susceptibility assessment in areas lacking in landslide inventory data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867083PMC
http://dx.doi.org/10.1038/s41598-023-48196-0DOI Listing

Publication Analysis

Top Keywords

landslide susceptibility
28
susceptibility assessment
24
landslide data
16
landslide
13
seismic landslide
12
assessment model
12
chenghai area
12
susceptibility
9
principal component
8
component analysis
8

Similar Publications

Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate earthquake hazard mitigation strategies. In this study, a real-time assessment framework for structural seismic susceptibility is developed.

View Article and Find Full Text PDF

The preparation of accurate multi-hazard susceptibility maps is essential to effective disaster risk management. Past studies have relied mainly on traditional machine learning models, but these models do not perform well for complex spatial patterns. To address this gap, this study uses two meta-heuristic algorithms (Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)) to provide an optimized Random Forest (RF) model with better predictive ability.

View Article and Find Full Text PDF

Integrating Eco-DRR into landslide susceptibility assessment: The critical role of eco-environmental factors.

J Environ Manage

August 2025

Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalunya, Spain; Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Cerdanyola del Vallès, Catalunya, Spain. Electronic address:

Understanding the factors driving landslide susceptibility is essential for improving risk assessment and disaster management. Traditional assessments often emphasize structural factors such as topography and geology, while overlooking eco-environmental variables. In this case study from western Rwanda, we propose a multidimensional landslide susceptibility assessment framework grounded in Ecosystem-based Disaster Risk Reduction (Eco-DRR) principles, using a Random Forest model.

View Article and Find Full Text PDF

Coseismic landslides are among the most perilous geological disasters in hilly places after earthquakes. Precise assessment of coseismic landslide susceptibility is crucial for forecasting the effects of landslides and alleviating subsequent tragedies. This research formulates a comprehensive landslide hazard assessment model by integrating the Newmark physical model with machine learning techniques.

View Article and Find Full Text PDF

The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry effects on InSAR-based landslide monitoring. Utilizing multi-sensor SAR imagery (Sentinel-1 C-band, ALOS-2 L-band, and LUTAN-1 L-band) acquired between 2018 and 2025, we integrate time-series InSAR analysis with geological records, high-resolution topographic data, and field investigation findings to assess representative landslide-susceptible zones in the Qijiang District.

View Article and Find Full Text PDF