Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, novel nanohybrids of biosynthesized zinc oxide (ZnO) and magnetite-nanocarbon (FeO-NC) obtained from the carbonization of toner powder waste were fabricated and investigated for persulfate (PS) activation for the efficient degradation of tetracycline (TCN). The chemical and physical properties of the synthesized catalysts were analyzed using advanced techniques. ZnO/FeO-NC nanohybrid with mass ratio 1:2, respectively in the presence of PS showed the highest TCN removal efficiency compared to the individual components (ZnO and FeO-NC) and other nanohybrids with mass ratios of 1:1 and 2:1. The results indicated that efficient degradation of TCN could be attained at pH 3-7. The optimum operating parameters were TCN concentration of 12.8 mg/L, PS concentration of 7 Mm, and catalyst dose of 0.55 g/L. The high stability of ZnO/FeO-NC (1:2) nanocomposite was assured by the slight drop in TCN degradation percentage from 97.27% to 85.45% after five successive runs under the optimum conditions and the concentrations of leached iron and zinc into the solution were monitored. The quenching experiments explored that the prevailing reactive entities were sulfate radicals. Additionally, the degradation of TCN in various water matrices was investigated, and a degradation pathway was suggested. Further, degradation of real pharmaceutical waste was conducted showing that the removal efficiencies of TCN, total organic carbon (TOC), and chemical oxygen demand (COD) were 89.79, 80.65, and 78.64% after 2 h under the optimum conditions. The effectiveness of the proposed system (ZnO/FeO-NC (1:2) @ PS) for the degradation of real samples compiled from industrial effluents as well as its inexpensiveness and green nature qualify this system for the full-scale application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141448DOI Listing

Publication Analysis

Top Keywords

degradation tetracycline
8
real pharmaceutical
8
toner powder
8
efficient degradation
8
degradation tcn
8
optimum conditions
8
degradation real
8
degradation
7
tcn
7
effective degradation
4

Similar Publications

Iron-carbon materials have emerged as promising heterogeneous Fenton-like catalysts for the removal of emerging organic contaminants. However, their practical applications are substantially hindered by complex preparation procedures and irreversible deactivation of iron centers. Herein, a novel double-layer core-shell catalyst Fe@FeC@Graphite (Fe-CTS-3000) is one-step synthesized by a high-temperature carbothermal shock (CTS) strategy.

View Article and Find Full Text PDF

The study introduces a sustainable and eco-friendly approach to the first-time biosynthesis of zinc oxide (ZnO) nanoparticles using Schizophyllum commune (S. commune), a wood-rotting fungus that is well known for its superior lignocellulose biodegradation ability. The unique enzymatic machinery and metabolites produced during the lignocellulose breakdown not only provide a natural reducing and stabilizing environment but also facilitate the controlled synthesis of ZnO nanoparticles without the need for hazardous chemicals, high-energy input, or complex reaction conditions.

View Article and Find Full Text PDF

The widespread use of antibiotics in humans and animals raises significant environmental concerns. However, few approaches can simultaneously quantify their transfer from humans and animals and track their fate in soils and rivers. In this study, we developed the MARINA-Antibiotics model (Model to Assess River Inputs of pollutaNts to seAs for Antibiotics) to quantify the sources and concentrations of 30 widely used antibiotics, as well as assess their associated environmental risks, and implemented this model in the Three Gorges Reservoir Area in 2020.

View Article and Find Full Text PDF

This study investigated the degradation of tetracycline (TCN) antibiotic catalytic activation of periodate (PI, IO ) using a novel composite catalyst composed of green-synthesized magnetite nanoparticles supported on water lettuce-derived biochar (MWLB). Characterization results revealed that the magnetic biochar possessed a porous structure, abundant surface functional groups, and high carbon and iron contents. Compared to conventional oxidants such as persulfate, hydrogen peroxide, and peroxymonosulfate, the PI-activated system demonstrated superior degradation efficiency.

View Article and Find Full Text PDF

Oily wastewater, such as from oil spills, chemical leaks, and organic pollutants, has become a serious environmental pollution problem. Superhydrophobic cotton fabric has attracted extensive research interest as an ideal material for handling oily wastewater, but this solution is difficult to balance efficient oil-water separation and removal of organic pollutants in complex oily wastewater. Therefore, the combination of superwetting and photocatalysis is expected to provide an efficient and simple solution.

View Article and Find Full Text PDF