98%
921
2 minutes
20
Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898737 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1012008 | DOI Listing |
Front Microbiol
August 2025
Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since emerging in the late 1980s. Although vaccination has been widely used to control PRRS epidemics in Chinese pig farms, they provided limited protection against PRRSV transmission; moreover, no effective therapeutic drugs are available. Therefore, there is an urgent need to develop novel antiviral strategies to control PRRSV epidemics.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, San Francisco, CA, United States. Electronic address:
PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated, Rab GTPase phosphorylation. We showed previously that PPM1H relies on an N-terminal amphipathic helix for Golgi membrane localization and this helix enables PPM1H to associate with liposomes in vitro; binding to highly curved liposomes activates PPM1H's phosphatase activity. We show here that PPM1H also contains an allosteric binding site for its non-phosphorylated reaction products, Rab8A and Rab10.
View Article and Find Full Text PDFThe end-stage pathology of Parkinson's disease (PD) involves the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). However, synaptic deregulation of these neurons begins much earlier. Understanding the mechanisms behind synaptic deficits is crucial for early therapeutic intervention, yet these remain largely unknown.
View Article and Find Full Text PDFScience
September 2025
RIKEN Center for Sustainable Resource Science, RIKEN-TRIP, Yokohama, Japan.
Plants deploy a diverse array of pattern recognition receptors (PRRs), which perceive microbe-associated molecular patterns to activate immune responses. Leucine-rich repeat receptor-like kinase subgroup XII (LRR-RLK-XII) represents one of the largest PRR families owing to lineage-specific diversification. Through bioinformatics and synthetic biology approaches, we characterized LRR-RLK-XIIs from 285 plant species and identified a receptor, "SCORE," that perceives cold shock protein (CSP) peptides.
View Article and Find Full Text PDFBiochem J
September 2025
Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt , 60438, Germany.
The Rab GTPase switch-2 region is a hotspot for post-translational modifications. Its phosphorylation can determine whether individuals develop Parkinson's disease or not. Other modifications of the same region are catalyzed by enzymes from bacterial pathogens when they infect human cells.
View Article and Find Full Text PDF