Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The development of photocatalysts with continuous electron extraction and rapid proton transfer could kinetically accelerate the artificial photosynthesis, but remains a challenge. Herein, we report the topology-guided synthesis of a high-crystalline triazine covalent organic framework (COF) decorated by uniformly distributed polar oxygen functional groups (sulfonic group or carboxyl) as the strong electron/proton extractor for efficient photocatalytic HO production. It was found that the polarity-based proton transfer as well as electron enrichment in as-obtained COFs played a crucial role in improving the HO photosynthesis efficiency (i.e., with an activity order of sulfonic acid- (SOH-COF)>carboxyl- (COOH-COF)>hydrogen- (H-COF) functionalized COFs). The strong polar sulfonic acid group in the high-crystalline SOH-COF triggered a well-oriented built-in electric field and more hydrophilic surface, which serves as an efficient carrier extractor enabling a continuous transportation of the photogenerated electrons and interfacial proton to the active sites (i.e., C atoms linked to -SOH group). As-accelerated proton-coupled electron transfer (PCET), together with the stabilized O adsorption finally leads to the highest HO production rate of 4971 μmol g h under visible light irradiation. Meanwhile, a quantum yield of 15 % at 400 nm is obtained, superior to most reported COF-based photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202320218 | DOI Listing |