Article Synopsis

  • The study investigates how local differences in hemodynamic response timing affect the temporal specificity of fMRI signals, focusing on the primary visual cortex (V1).
  • Researchers used ultra-high field fMRI to assess how different areas of V1 responded to slow and fast visual stimuli, finding significant variability in how well different voxels preserved information about rapid neural activity.
  • Results indicated that voxel position along the anterior-posterior axis of V1 plays a critical role in temporal specificity, with specific areas demonstrating better preservation of response amplitudes to higher frequency stimuli, highlighting the impact of anatomical and vascular features on fMRI detection biases.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability to detect fast responses with functional MRI depends on the speed of hemodynamic responses to neural activity, because hemodynamic responses act as a temporal low-pass filter which blurs rapid changes. However, the shape and timing of hemodynamic responses are highly variable across the brain and across stimuli. This heterogeneity of responses implies that the temporal specificity of fMRI signals, or the ability of fMRI to preserve fast information, could also vary substantially across the cortex. In this work we investigated how local differences in hemodynamic response timing affect the temporal specificity of fMRI. We used ultra-high field (7T) fMRI at high spatiotemporal resolution, studying the primary visual cortex (V1) as a model area for investigation. We used visual stimuli oscillating at slow and fast frequencies to probe the temporal specificity of individual voxels. As expected, we identified substantial variability in temporal specificity, with some voxels preserving their responses to fast neural activity more effectively than others. We investigated which voxels had the highest temporal specificity, and tested whether voxel timing was related to anatomical and vascular features. We found that low temporal specificity is only weakly explained by the presence of large veins or cerebral cortical depth. Notably, however, temporal specificity depended strongly on a voxel's position along the anterior-posterior anatomical axis of V1, with voxels within the calcarine sulcus being capable of preserving close to 25% of their amplitude as the frequency of stimulation increased from 0.05Hz to 0.20Hz, and voxels nearest to the occipital pole preserving less than 18%. These results indicate that detection biases in high-resolution fMRI will depend on the anatomical and vascular features of the area being imaged, and that these biases will differ depending on the timing of the underlying neuronal activity. While we attribute this variance primarily to hemodynamic effects, neuronal nonlinearities may also influence response timing. Importantly, this spatial heterogeneity of temporal specificity suggests that it could be exploited to achieve higher specificity in some locations, and that tailored data analysis strategies may help improve the detection and interpretation of fast fMRI responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862860PMC
http://dx.doi.org/10.1101/2024.02.01.578428DOI Listing

Publication Analysis

Top Keywords

temporal specificity
36
anatomical vascular
12
vascular features
12
hemodynamic responses
12
temporal
10
specificity
9
neural activity
8
specificity fmri
8
response timing
8
fmri
7

Similar Publications

Distribution and Risk Factors of Scrub Typhus in South Korea, From 2013 to 2019: Bayesian Spatiotemporal Analysis.

JMIR Public Health Surveill

September 2025

Department of Preventive Medicine, College of Medicine, Korea University, 73 Goryeodae-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea, 82 2-2286-1169.

Background: Scrub typhus (ST), also known as tsutsugamushi disease, is a common febrile vector-borne illness in South Korea, transmitted by trombiculid mites infected with Orientia tsutsugamushi, with rodents serving as the main hosts. Although vector-borne diseases like ST require both a One Health approach and a spatiotemporal perspective to fully understand their complex dynamics, previous studies have often lacked integrated analyses that simultaneously address disease dynamics, vectors, and environmental shifts.

Objective: We aimed to explore spatiotemporal trends, high-risk areas, and risk factors of ST by simultaneously incorporating host and environmental information.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Background: Reinfections with SARS-CoV-2 have gained increasing relevance in the context of emerging immune-evasive variants and waning population immunity. Understanding their frequency and distribution is essential to guide public health strategies, particularly in middle-income countries. This study investigates the epidemiological patterns of SARS-CoV-2 reinfections in Espírito Santo, Brazil, using integrated notification and vaccination databases.

View Article and Find Full Text PDF

Distinct cerebellar networks underpin clinical improvement in adolescent Tourette disorder.

Brain

September 2025

Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 75013 Paris, France.

Adolescence is frequently called the second brain maturation period. In Tourette disorder (TD), the clinical trajectory of tics and associated psychiatric co-morbidities vary significantly across individuals during the transition from adolescents to adulthood. In this study, we aimed to identify patterns of resting-state functional connectivity that differentiate adolescents with TD from their neurotypical peers, and to monitor symptom-specific functional changes over time.

View Article and Find Full Text PDF

Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.

View Article and Find Full Text PDF