A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Copper interaction with cystatin C: effects on protein structure and oligomerization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human cystatin C (hCC), a small secretory protein, has gained attention beyond its classical role as a cysteine protease inhibitor owing to its potential involvement in neurodegenerative disorders. This study investigates the interaction between copper(II) ions [Cu(II)] and hCC, specifically targeting histidine residues known to participate in metal binding. Through various analytical techniques, including mutagenesis, circular dichroism, fluorescence assays, gel filtration chromatography, and electron microscopy, we evaluated the impact of Cu(II) ions on the structure and oligomerization of hCC. The results show that Cu(II) does not influence the secondary and tertiary structure of the studied hCC variants but affects their stability. To explore the Cu(II)-binding site, nuclear magnetic resonance (NMR) and X-ray studies were conducted. NMR experiments revealed notable changes in signal intensities and linewidths within the region His-Asp-Gln-Pro-His, suggesting its involvement in Cu(II) coordination. Both histidine residues from this fragment were found to serve as a primary anchor of Cu(II) in solution, depending on the structural context and the presence of other Cu(II)-binding agents. The presence of Cu(II) led to significant destabilization and altered thermal stability of the wild-type and H90A variant, confirming differentiation between His residues in Cu(II) binding. In conclusion, this study provides valuable insights into the interaction between Cu(II) and hCC, elucidating the impact of copper ions on protein stability and identifying potential Cu(II)-binding residues. Understanding these interactions enhances our knowledge of the role of copper in neurodegenerative disorders and may facilitate the development of therapeutic strategies targeting copper-mediated processes in protein aggregation and associated pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.17092DOI Listing

Publication Analysis

Top Keywords

structure oligomerization
8
neurodegenerative disorders
8
histidine residues
8
cuii
7
hcc
5
copper interaction
4
interaction cystatin
4
cystatin effects
4
protein
4
effects protein
4

Similar Publications