98%
921
2 minutes
20
Background: A neuroma occurs when a regenerating transected peripheral nerve has no distal target to reinnervate. Symptomatic neuromas are a common cause of postamputation pain that can lead to substantial disability. Regenerative peripheral nerve interface (RPNI) surgery may benefit patients through the use of free nonvascularized muscle grafts as physiologic targets for peripheral nerve reinnervation for mitigation of neuroma and postamputation pain.
Description: An RPNI is constructed by implanting the distal end of a transected peripheral nerve into a free nonvascularized skeletal muscle graft. The neuroma or free end of the affected nerve is identified, transected, and skeletonized. A free muscle graft is then harvested from the donor thigh or from the existing amputation site, and the distal end of each transected nerve is implanted into the center of the free muscle graft with use of 6-0 nonabsorbable suture. This can be done acutely at the time of amputation or as an elective procedure at any time postoperatively.
Alternatives: Nonsurgical treatments of neuromas include desensitization, chemical or anesthetic injections, biofeedback, transcutaneous electrical nerve stimulation, topical lidocaine, and/or other medications (e.g., antidepressants, anticonvulsants, and opioids). Surgical treatment of neuromas includes neuroma excision, nerve capping, excision with transposition into bone or muscle, nerve grafting, and targeted muscle reinnervation.
Rationale: Creation of an RPNI is a simple and reproducible surgical option to prevent neuroma formation that leverages several biologic processes and addresses many limitations of existing neuroma-treatment strategies. Given the understanding that neuromas will form when regenerating axons are not presented with end organs for reinnervation, any strategy that reduces the number of aimless axons within a residual limb should serve to reduce symptomatic neuromas. The use of free muscle grafts offers a vast supply of denervated muscle targets for regenerating nerve axons and facilitates the reestablishment of neuromuscular junctions without sacrificing denervation of any residual muscles.
Expected Outcomes: Articles describing RPNI surgery for postamputation pain have shown favorable outcomes, with significant reduction in neuroma pain and phantom pain scores at approximately 7 months postoperatively. Neuroma pain scores were reduced by 71% and phantom pain scores were reduced by 53%. Prophylactic RPNI surgery is also associated with substantially lower incidence of symptomatic neuromas (0% versus 13.3%) and a lower rate of phantom limb pain (51.1% versus 91.1%) compared with the rates in patients who did not undergo RPNI surgery.
Important Tips: Ask the patient preoperatively to point at the site of maximal tenderness, as this can serve as a guide for where the symptomatic neuroma may be located. The incision can be made either through the previous site of the amputation or directly over the site of maximal tenderness longitudinally. The pitfall of incising directly over the site is creating another incision with its attendant risk of wound infection.Excise the terminal neuroma with a knife until healthy-appearing axons are visualized.The free nonvascularized skeletal muscle graft can be obtained from local muscle (preferred) or from a separate donor site. A separate donor site can introduce donor-site morbidity and complications, including hematoma and pain.The harvested skeletal muscle graft should ideally be approximately 35 mm long, 20 mm wide, and 5 mm thick in order to ensure survivability and to prevent central necrosis. The harvesting can be performed with curved Mayo scissors.The peripheral nerve should be implanted parallel to the direction of the muscle fibers, and the epineurium should be secured to the free muscle graft at 1 or 2 places. One suture should be utilized to tack the distal end of the epineurium to the middle of the bed of the muscle graft. Another suture should be utilized to start the wrapping of the muscle graft around the nerve using a bite through the muscle, a bite through the epineurium of the proximal end of the nerve, and another bite through the other muscle edge in order to form a cylindrical wrap around the nerve.Wrap the entire muscle graft by taking only bites of muscle graft around the nerve to secure the muscle graft in a cylindrical structure using 2 to 4 more sutures.Avoid locating the RPNI near weight-bearing surfaces of the residual limb when closing. The RPNI should be in the muscular tissue, deep to the subcutaneous tissue and dermis.Do perform intraneural dissection for large-caliber nerves to create several (normally 2 to 4) distinct RPNIs, to avoid too many regenerating axons in a single free muscle graft.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852375 | PMC |
http://dx.doi.org/10.2106/JBJS.ST.23.00009 | DOI Listing |
Liver Int
October 2025
Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany.
Background And Aims: We aimed to ascertain the prevalence of sarcopenia in patients with primary sclerosing cholangitis (PSC) and to assess the prognostic value as a biomarker for disease outcome.
Methods: We collected data from 224 patients (148 male, 76 female; mean age 41 years) from January 2002 to December 2021, with a confirmed diagnosis of PSC who underwent magnetic resonance imaging (MRI). Muscle mass was quantified at the level of the third lumbar vertebra by measurement of psoas muscle thickness (PMT) and total psoas muscle area (PMA).
Food Res Int
November 2025
Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:
Crab encounters obstacles like elevated transportation expense and diminished survival rate. In the study, the effects of cold anesthesia (CA), including fast cooling (FC) and slow cooling (SC) anesthesia on the vitality state and muscle quality of Chinese mitten crab were researched. We found firstly that the CA dormancy temperature range of Chinese mitten crab was identified from -2 to 10 °C, and 7 °C was optimal.
View Article and Find Full Text PDFNeurology
October 2025
Department of Neurology, Mayo Clinic, Rochester, MN.
Monoclonal gammopathy-associated myopathies (MGAMs) are rare yet treatable myopathies that occur in association with monoclonal gammopathies. These myopathies include light chain (AL) amyloidosis myopathy, sporadic late-onset nemaline myopathy (SLONM), scleromyxedema with associated myopathy, and newly reported monoclonal gammopathy-associated glycogen storage myopathy (MGGSM), including the vacuolar myopathy with monoclonal gammopathy and stiffness. All these 4 distinct subtypes of MGAMs typically present in patients aged 40 or older, frequently with a subacute onset of rapidly progressive proximal and axial muscle weakness.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta.
Purpose: To demonstrate the use of negative pressure wound therapy (NPWT) and other reconstructive techniques in the reconstruction of large tissue defects resulting from periocular necrotizing fasciitis (NF).
Methods: Description of technique with 3 illustrative cases and accompanying photographic montage.
Results: Technique: Debridement successfully spared post-septal tissues and the lid margin in all cases.
J Vis Exp
August 2025
Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa; Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa; Geminii, Inc.
Non-small cell lung cancer (NSCLC) continues to be the number one cause of cancer-related death for both women and men worldwide. More information needs to be gathered to understand the interactions between cancer cells, the immune system, the microenvironment within each tumor, and the host tissue to develop more effective treatment modalities. Reported here is a simple, repeatable method for inducing cancer within the mouse lung, allowing for the monitoring of tumor growth from early to late-stage disease.
View Article and Find Full Text PDF