98%
921
2 minutes
20
Pigment epithelium-derived factor (PEDF) could bind to vascular endothelial growth factor receptor 2 (VEGFR2) and inhibit its activation induced by VEGF. But how PEDF affects VEGFR2 pathway is still poorly understood. In this study, we elucidated the precise mechanism underlying the interaction between PEDF and VEGFR2, and subsequently corroborated our findings using a rat AMI model. PEDF prevented endocytosis of VE-cadherin induced by hypoxia, thereby protecting the endothelium integrity. A three-dimensional model of the VEGFR2-PEDF complex was constructed by protein-protein docking method. The results showed that the VEGFR2-PEDF complex was stable during the simulation. Hydrogen bonds, binding energy and binding modes were analyzed during molecular dynamics simulations, which indicated that hydrogen bonds and hydrophobic interactions were important for the recognition of VEGFR2 with PEDF. In addition, the results from exudation of fibrinogen suggested that PEDF inhibits vascular leakage in acute myocardial infarction and confirmed the critical role of key amino acids in the regulation of endothelial cell permeability. This observation is also supported by echocardiography studies showing that the 34mer peptide sustained cardiac function during acute myocardial infarction. Besides, PEDF and 34mer could inhibit the aggregation of myofiber in the heart and promoted the formation of a dense cell layer in cardiomyocytes, which suggested that PEDF and 34mer peptide protect against AMI-induced cardiac dysfunction. These results suggest that PEDF inhibits the phosphorylation of downstream proteins, thereby preventing vascular leakage, which provides a new therapeutic direction for the treatment of acute myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2024.2314260 | DOI Listing |
JAMA Netw Open
September 2025
Division of Cardiology, Duke University Hospital, Durham, North Carolina.
Importance: Previous data suggest that the time changes associated with daylight savings time (DST) may be associated with an increased incidence of acute myocardial infarction (AMI).
Objective: To determine whether the incidence of patients presenting with AMI is greater during the weeks during or after DST and compare the in-hospital clinical events between the week before DST and after DST.
Design, Setting, And Participants: This cross-sectional study examined patients enrolled in the Chest Pain MI Registry from 2013 to 2022.
Clin Res Cardiol
September 2025
Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.
Background: Fractional flow reserve (FFR) for non-culprit lesions (NCLs) in patients with ST-elevation myocardial infarction (STEMI) can be influenced by temporary changes in microvascular resistance. Angiography-derived vessel fractional flow reserve (vFFR) has been tested as a less-invasive alternative.
Aims: The FAST STEMI II study aimed to assess the diagnostic performance of acute-setting vFFR vs.
Eur Heart J
September 2025
Cardiovascular and Genomics Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
Myocardial infarction (MI) is defined pathologically as myocardial cell death resulting from prolonged ischaemia. The clinical definition of this pathological process relies on clinical evidence of myocardial ischaemia and biomarker evidence of myocardial cell death. Cardiac troponins are the standard clinical biomarker for assessing cardiac cell death.
View Article and Find Full Text PDFESC Heart Fail
September 2025
Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
Aims: Non-pharmacological therapies for acute decompensated heart failure (HF) and cardiogenic shock have evolved considerably in recent decades. Short-term mechanical circulatory support (MCS) devices can be used as circulatory backup. While nearly all available devices use continuous flow, evidence indicates that pulsatile flow can be more effective.
View Article and Find Full Text PDFFASEB J
September 2025
National Heart Center Singapore, Singapore, Singapore.
Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.
View Article and Find Full Text PDF