Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Endometrial carcinoma (EC) risk stratification prior to surgery is crucial for clinical treatment. In this study, we intend to evaluate the predictive value of radiomics models based on magnetic resonance imaging (MRI) for risk stratification and staging of early-stage EC. The study included 155 patients who underwent MRI examinations prior to surgery and were pathologically diagnosed with early-stage EC between January, 2020, and September, 2022. Three-dimensional radiomics features were extracted from segmented tumor images captured by MRI scans (including T2WI, CE-T1WI delayed phase, and ADC), with 1521 features extracted from each of the three modalities. Then, using five-fold cross-validation and a multilayer perceptron algorithm, these features were filtered using Pearson's correlation coefficient to develop a prediction model for risk stratification and staging of EC. The performance of each model was assessed by analyzing ROC curves and calculating the AUC, accuracy, sensitivity, and specificity. In terms of risk stratification, the CE-T1 sequence demonstrated the highest predictive accuracy of 0.858 ± 0.025 and an AUC of 0.878 ± 0.042 among the three sequences. However, combining all three sequences resulted in enhanced predictive accuracy, reaching 0.881 ± 0.040, with a corresponding increase in the AUC to 0.862 ± 0.069. In the context of staging, the utilization of a combination involving T2WI with CE-T1WI led to a notably elevated predictive accuracy of 0.956 ± 0.020, surpassing the accuracy achieved when employing any singular feature. Correspondingly, the AUC was 0.979 ± 0.022. When incorporating all three sequences concurrently, the predictive accuracy reached 0.956 ± 0.000, accompanied by an AUC of 0.986 ± 0.007. It is noteworthy that this level of accuracy surpassed that of the radiologist, which stood at 0.832. The MRI radiomics model has the potential to accurately predict the risk stratification and early staging of EC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976915 | PMC |
http://dx.doi.org/10.1007/s10278-023-00936-4 | DOI Listing |