Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The harm and impact of the COVID-19 pandemic have highlighted the importance of fast, sensitive, and cost-effective virus detection methods. In this study, we developed a DNA aptamer sensor using nanoparticle-enhanced surface plasmon resonance imaging (SPRi) technology to achieve efficient labeling-free detection of SARS-CoV-2 S protein. We used the same DNA aptamer to modify the surface of the SPRi sensor chip and gold nanoparticles (AuNPs), respectively, for capturing target analytes and amplifying signals, achieving ideal results while greatly reducing costs and simplifying the preparation process. The SPRi sensing method exhibits a good linear relationship (R = 0.9926) in the concentration range of 1-20 nM before adding AuNPs to amplify the signal, with a limit of detection (LOD) of 0.32 nM. After amplifying the signal, there is a good linear relationship (R = 0.9829) between the concentration range of 25-1000 pM, with a LOD of 5.99 pM. The simulation results also verified the effectiveness of AuNPs in improving SPRi signal response. The SPRi sensor has the advantage of short detection time and can complete the detection within 10 min. In addition, the specificity and repeatability of this method can achieve excellent results. This is the first study to simultaneously capture a viral marker protein and amplify the signal using polyadenylic acid (polyA)-modified DNA aptamers on the SPR platform. This scheme can be used as a fast and inexpensive detection method for diagnosis at the point of care (POC) to combat current and future epidemics caused by the virus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05172-5DOI Listing

Publication Analysis

Top Keywords

spri sensor
12
detection sars-cov-2
8
dna aptamer
8
good linear
8
linear relationship
8
concentration range
8
detection
7
spri
6
dna
4
dna aptamer-linked
4

Similar Publications

The transport of micropollutants through soil is, inter alia, largely influenced by their interaction with humic acids (HAs). As chemically complex carbon molecules, HAs make part of natural organic matter and play a significant role in the retention of micropollutants in the environment. This study examines the interactions of pH-dependent HA fractions with metazachlor, paracetamol, and caffeine, using the surface plasmon resonance imaging (SPRi) method.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO-1) and interferon-gamma (IFN-γ) are proteins that play a significant role in inflammatory conditions and tumor development. The detection of IDO1 and IFN-γ is crucial for understanding their interplay in immune responses. This study introduced a novel method for the simultaneous quantitative determination of IDO-1 and IFN-γ in different biological samples/materials.

View Article and Find Full Text PDF

Osteopontin (OPN) is a protein that plays many essential functions in the human body. It is present in most tissues and body fluids. OPN, among other things, participates in wound healing, the formation and remodeling of bone, immune response, inflammation, angiogenesis, and tumor formation.

View Article and Find Full Text PDF

A surface plasmon resonance imaging (SPRi) biosensor is presented which facilitates rapid and sensitive detection of the ovarian cancer biomarker carbohydrate antigens 125 (CA125). The CA125 protein was specifically captured and directly recognized by polyadenylic (polyA)-modified DNA aptamer on the surface of a Au chip. The biosensor demonstrated a linear range of direct detection of CA125 based on SPRi from 20 nM to 0.

View Article and Find Full Text PDF

Some microorganisms, including lactic acid bacteria (LAB), can bind to mycotoxins. Its binding ability is useful for mycotoxin mitigation. Conventionally, the binding assay for this ability of microorganisms to mycotoxins has been performed by the so-called in vitro assay.

View Article and Find Full Text PDF