Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The advent of CRISPR/Cas9 technology has revolutionized the genome editing field. CRISPR-based libraries have become powerful tools for high-throughput functional genomics and genetic screening. CRISPR-based libraries can represent a powerful approach to uncovering genes related to chemoresistance and therapy efficacy and to studying cancer cells' fitness. In this review, we conducted an extensive literature search and summarized multiple studies that utilized these libraries in both in vitro and in vivo research, emphasizing their key findings. We provide an overview of the design, construction, and applications of CRISPR-based libraries in different cancer-focused studies and discuss the different types of CRISPR-based libraries. We finally point out the challenges associated with library design, including guide RNA selection, off-target effects, and library complexity. This review provides an overview of the work conducted with CRISPR libraries in the search for new targets that could potentially assist in cancer therapy by contributing to functional approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.critrevonc.2024.104287 | DOI Listing |