Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Heavy metals present a substantial threat to both the environment and human health. Considering the delicate ecological equilibrium of the Tibetan Plateau (TP) and its heightened susceptibility to anthropogenic impacts, scholarly attention has progressively turned toward the examination of heavy metal pollution within the plateau's environment. In this study, we conducted a comprehensive analysis of various heavy metals (As, Cr, Co, Ni, Cu, Mo, Cd, Pb, and Sb), utilizing topsoil samples collected from the TP during the period of 2018-2021. Additionally, snow and cryoconite samples obtained from TP glaciers during the same timeframe were also subjected to analysis. The results indicate elevated concentrations of total heavy metals in the eastern and western TP (328.7 μg/g), as opposed to the central and southern TP (145.7 μg/g). Most heavy metals exhibit a consistent spatial distribution pattern. High Enrichment Factors (EFs) and Geoaccumulation Index (I) values for As and Cd suggest their enrichment in TP topsoil. Receptor modeling identified three primary sources of heavy metals within the topsoil: industrial sources (42.3%), inherent natural sources within the surface soil (20.6%), and vehicular emissions (14.2%). Substantial differences in heavy metal concentrations and spatial distribution were observed between the topsoil and the glacial snow-cryoconite matrix. The prominent presence of Sb in the snow-cryoconite matrix, in contrast to its low abundance in the topsoil, indicates distinct source influences of long-range transported materials between the two environments. Our inference suggests that the influence of heavy metals from distant pollutants undergo mixing and dilution in the topsoil due to the presence of local indigenous heavy metals, although such influence is notably observed on the glacier surface of the TP. Consequently, this underscores the significant impact of long-range transported sources on heavy metals, surpassing the influence of local TP soils, to the alpine glaciers and even other atmospheric sediments in Tibetan Plateau.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.123498 | DOI Listing |