Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Federated learning (FL) is a distributed machine learning framework that is gaining traction in view of increasing health data privacy protection needs. By conducting a systematic review of FL applications in healthcare, we identify relevant articles in scientific, engineering, and medical journals in English up to August 31st, 2023. Out of a total of 22,693 articles under review, 612 articles are included in the final analysis. The majority of articles are proof-of-concepts studies, and only 5.2% are studies with real-life application of FL. Radiology and internal medicine are the most common specialties involved in FL. FL is robust to a variety of machine learning models and data types, with neural networks and medical imaging being the most common, respectively. We highlight the need to address the barriers to clinical translation and to assess its real-world impact in this new digital data-driven healthcare scene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897620 | PMC |
http://dx.doi.org/10.1016/j.xcrm.2024.101419 | DOI Listing |