A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Making Use of Averaging Methods in MODELLER for Protein Structure Prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advances in protein structure prediction, driven by AlphaFold 2 and machine learning, demonstrate proficiency in static structures but encounter challenges in capturing essential dynamic features crucial for understanding biological function. In this context, homology-based modeling emerges as a cost-effective and computationally efficient alternative. The MODELLER (version 10.5, accessed on 30 November 2023) algorithm can be harnessed for this purpose since it computes intermediate models during simulated annealing, enabling the exploration of attainable configurational states and energies while minimizing its objective function. There have been a few attempts to date to improve the models generated by its algorithm, and in particular, there is no literature regarding the implementation of an averaging procedure involving the intermediate models in the MODELLER algorithm. In this study, we examined MODELLER's output using 225 target-template pairs, extracting the best representatives of intermediate models. Applying an averaging procedure to the selected intermediate structures based on statistical potentials, we aimed to determine: (1) whether averaging improves the quality of structural models during the building phase; (2) if ranking by statistical potentials reliably selects the best models, leading to improved final model quality; (3) whether using a single template versus multiple templates affects the averaging approach; (4) whether the "ensemble" nature of the MODELLER building phase can be harnessed to capture low-energy conformations in holo structures modeling. Our findings indicate that while improvements typically fall short of a few decimal points in the model evaluation metric, a notable fraction of configurations exhibit slightly higher similarity to the native structure than MODELLER's proposed final model. The averaging-building procedure proves particularly beneficial in (1) regions of low sequence identity between the target and template(s), the most challenging aspect of homology modeling; (2) holo protein conformations generation, an area in which MODELLER and related tools usually fall short of the expected performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855553PMC
http://dx.doi.org/10.3390/ijms25031731DOI Listing

Publication Analysis

Top Keywords

intermediate models
12
protein structure
8
structure prediction
8
averaging procedure
8
statistical potentials
8
building phase
8
final model
8
fall short
8
models
6
modeller
5

Similar Publications