A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling the Mechanism of Cork Spot-like Physiological Disorders in 'Kurenainoyume' Apples Based on Occurrence Location. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cork spot-like physiological disorder (CSPD) is a newly identified issue in 'Kurenainoyume' apples, yet its mechanism remains unclear. To investigate CSPD, we conducted morphological observations on 'Kurenainoyume' apples with and without pre-harvest fruit-bagging treatment using light-impermeable paper bags. Non-bagged fruit developed CSPD in mid-August, while no CSPD symptoms were observed in bagged fruit. The bagging treatment significantly reduced the proportion of opened lenticels, with only 17.9% in bagged fruit compared to 52.0% in non-bagged fruits. In non-bagged fruit, CSPD spots tended to increase from the lenticels, growing in size during fruit development. The cuticular thickness and cross-sectional area of fresh cells in CSPD spots were approximately 16 µm and 1600 µm², respectively. Healthy non-bagged fruit reached these values around 100 to 115 days after full bloom from mid- to late August. Microscopic and computerized tomography scanning observations revealed that many CSPD spots developed at the tips of vascular bundles. Therefore, CSPD initiation between opened lenticels and vascular bundle tips may be influenced by water stress, which is potentially caused by water loss, leading to cell death and the formation of CSPD spots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857259PMC
http://dx.doi.org/10.3390/plants13030381DOI Listing

Publication Analysis

Top Keywords

cspd spots
16
'kurenainoyume' apples
12
non-bagged fruit
12
cspd
9
cork spot-like
8
spot-like physiological
8
bagged fruit
8
opened lenticels
8
fruit
6
unraveling mechanism
4

Similar Publications